题目内容
5.已知各项都不相等的等差数列{an},a6=6,又a1,a2,a4成等比数列.(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$+2n,求数列{bn}的前n项和Sn.
分析 (1)利用等差数列通项公式和等比数列性质列出方程组,求出首项和公差,由此能求出数列{an}的通项公式.
(2)由bn=2${\;}^{{a}_{n}}$+2n=2n+2n,利用分组求和法能求出数列{bn}的前n项和.
解答 解:(1)∵各项都不相等的等差数列{an},a6=6,又a1,a2,a4成等比数列.
∴$\left\{\begin{array}{l}{{a}_{6}={a}_{1}+5d=6}\\{({a}_{1}+d)^{2}={a}_{1}({a}_{1}+3d)}\\{d≠0}\end{array}\right.$,
解得a1=1,d=1,
∴数列{an}的通项公式an=1+(n-1)×1=n.
(2)∵bn=2${\;}^{{a}_{n}}$+2n=2n+2n,
∴数列{bn}的前n项和:
Sn=(2+22+23+…+2n)+2(1+2+3+…+n)
=$\frac{2(1-{2}^{n})}{1-2}$+2×$\frac{n(n+1)}{2}$
=2n+1-2+n2+n.
点评 本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关题目
16.“m<0”是“$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{m-1}$=1表示的曲线是双曲线”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
10.某人从甲地去乙地共走了500m,途经一条宽为x m的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里就能找到.已知该物品能被找到的概率为$\frac{24}{25}$,则河宽为( )
| A. | 80 m | B. | 20 m | C. | 40 m | D. | 50 m |
17.如果偶函数在[a,b]具有最大值,那么该函数在[-b.-a]有( )
| A. | 最大值 | B. | 最小值 | C. | 没有最大值 | D. | 没有最小值 |
14.某企业节能降耗技术改造后,在生产某产品过程中几录的产量x(吨)与相应的生产能耗y(吨)的几
组对应数据如表所示:
若根据表中数据得出y关于x的线性回归方程为$\stackrel{∧}{y}$=0.7x+0.35,则表中a的值为( )
组对应数据如表所示:
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | a |
| A. | 3 | B. | 3.15 | C. | 3.5 | D. | 4.5 |