题目内容
6.如果a,b满足ab=a+b+3,那么ab的取值范围是ab≤1或ab≥9.分析 化简可得a+b=ab-3,从而可得(ab-3)2≥4ab,从而解得.
解答 解:∵ab=a+b+3,
∴a+b=ab-3,
∴(a+b)2=(ab-3)2,
∵(a+b)2≥4ab,
∴(ab-3)2≥4ab,
即(ab)2-10ab+9≥0,
故ab≤1或ab≥9;
故答案为:ab≤1或ab≥9.
点评 本题考查了学生的化简运算能力及不等式的变形应用.
练习册系列答案
相关题目
10.已知f(α)=$\frac{sin(π-α)cos(2π-α)}{sin(\frac{π}{2}+α)}$,则f($\frac{31π}{3}$)=( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
1.已知O为△ABC内一点,且有$\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}=\overrightarrow 0$,记△ABC,△BCO,△ACO的面积分别为S1,S2,S3,则S1:S2:S3等于( )
| A. | 3:2:1 | B. | 3:1:2 | C. | 6:1:2 | D. | 6:2:1 |
11.△ABC中,AB=5,BC=3,CA=7,若点D满足$\overrightarrow{BD}=2\overrightarrow{DC}$,则△ABD的面积为( )
| A. | $\frac{{5\sqrt{3}}}{2}$ | B. | $\frac{5}{2}$ | C. | $5\sqrt{3}$ | D. | 5 |
18.已知z(2-i)=1+i,则$\overline z$=( )
| A. | $-\frac{1}{5}-\frac{3}{5}i$ | B. | $\frac{1}{5}+\frac{3}{5}i$ | C. | $-\frac{1}{5}+\frac{3}{5}i$ | D. | $\frac{1}{5}-\frac{3}{5}i$ |
15.将函数f(x)=sin(2x+$\frac{π}{4}$)的图象向左平移φ(φ>0)个单位后,得到的函数图象关于y轴对称,则φ的最小值为( )
| A. | $\frac{5}{8}$π | B. | $\frac{3}{8}$π | C. | $\frac{π}{4}$ | D. | $\frac{π}{8}$ |