题目内容

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD中点,M是棱PC上的点,PD=PA=2,BC=
1
2
AD=1,CD=
3

(1)若点M是棱PC的中点,求证:PA∥平面BMQ;
(2)求证:平面PQB⊥底面PAD;
(3)(仅理科做)若PM=3MC,求二面角M-BQ-C的大小.
考点:二面角的平面角及求法,直线与平面平行的判定,平面与平面垂直的判定
专题:综合题,空间位置关系与距离,空间角
分析:(1)本小题是一个证明线面平行的题,一般借助线面平行的判定定理求解,如图连接AC,交BQ于N,连接MN,先证明MN∥PA,再由线面平行的判定理证明线面平行;
(2)本小题是一个证明面面垂直的题,可采用面面垂直的定义求二面角是直角,或者用面面垂直的判定理证明,由题设条件知,利用面面垂直的判定定理证明较易,观察图形与题设条件,法一:可通过证明BQ⊥平面PAD来证明面面垂直;
(3)连结BD,以Q为坐标原点,QA,QB,QP分别为x轴y轴z轴建立空间直角坐标系,求出平面BMQ和BCQ的法向量,代入向量夹角公式,可得答案.
解答: 解:(1)连接AC,交BQ于N,连接MN.     …(1分)
∵BC∥AD且BC=
1
2
AD,即BC平行且等于AQ,
∴四边形BCQA为平行四边形,且N为AC中点,
又∵点M在是棱PC的中点,
∴MN∥PA.…(2分)
∵MN?平面MQB,PA?平面MQB,…(3分)
∴PA∥平面MBQ. …(4分)
(2)∵AD∥BC,BC=
1
2
AD,Q为AD的中点,
∴四边形BCDQ为平行四边形,∴CD∥BQ.…(6分)
∵∠ADC=90°∴∠AQB=90°  即QB⊥AD.
又∵平面PAD⊥平面ABCD
且平面PAD∩平面ABCD=AD,…(7分)
∴BQ⊥平面PAD.         …(8分)
∵BQ?平面PQB,
∴平面PQB⊥平面PAD.   …(9分)
(3)连结BD,∵底面ABCD是菱形,且∠BAD=60°,
∴△BAD是等边三角形,
∴BQ⊥AD由(Ⅰ)PQ⊥平面ABCD.
∴PQ⊥AD.
以Q为坐标原点,QA,QB,QP分别为x轴y轴z轴建立空间直角坐标系

则Q(0,0,0),A(1,0,0),B(0,
3
,0),P(0,0,
3
).
设平面BMQ的法向量
m
=(x,y,z)为,
注意到MN∥PA,∴
m
QB
=0
m
PA
=0

解得
m
=(
3
,0,1)是平面BMQ的一个法向量
又∵平面BCQ的法向量为
n
=
QP
=(0,0,
3

故二面角M-BQ-C的平面角θ满足:cosθ=
|
m
n
|
|
m
||
n
|
=
1
2

故θ=
π
3

即二面角M-BQ-C的平面角为
π
3
.…(12分)
点评:本题考查面面垂直的证明方法以及线面平行的证明,考查面面角,解题的关键是利用线面平行的判定,理解面面角的定义,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网