题目内容

在△ABC中,已知sinA:sinB:sinC=3:4:6,求△ABC最大角的余弦值.
考点:余弦定理,正弦定理
专题:解三角形
分析:sinA:sinB:sinC=3:4:6,由正弦定理可得:a:b:c=3:4:6,不妨取a=3,b=4,c=6.可知C最大,再利用余弦定理即可得出.
解答: 解:∵sinA:sinB:sinC=3:4:6,
由正弦定理可得:a:b:c=3:4:6,
不妨取a=3,b=4,c=6.
可知C最大,
由余弦定理可得:cosC=
a2+b2-c2
2ab
=
32+42-62
2×3×4
=-
11
24
点评:本题查克拉正弦定理、余弦定理的应用,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网