题目内容

12.设函数$f(x)=x+\frac{1}{x}+a$为定义在(-∞,0)∪(0,+∞)上的奇函数.
(1)求实数a的值;
(2)判断函数f(x)在区间(a+1,+∞)上的单调性,并用定义法证明.

分析 (1)利用$f(x)=x+\frac{1}{x}+a$为定义在(-∞,0)∪(0,+∞)上的奇函数,f(-x)=-f(x),即可求实数a的值;
(2)利用函数单调性的定义进行证明.

解答 解:(1)∵$f(x)=x+\frac{1}{x}+a$为定义在(-∞,0)∪(0,+∞)上的奇函数,
∴f(-x)=-f(x),
∴$-x-\frac{1}{x}+a=-(x+\frac{1}{x}+a)$,∴a=0.
(2)函数f(x)在区间(1,+∞)上是增函数.
证明:设1<x1<x2
则$f({x_1})-f({x_2})={x_1}-{x_2}+\frac{1}{x_1}-\frac{1}{x_2}={x_1}-{x_2}-\frac{{{x_1}-{x_2}}}{{{x_1}{x_2}}}=({x_1}-{x_2})\frac{{{x_1}{x_2}-1}}{{{x_1}{x_2}}}$.
∵1<x1<x2,∴x1-x2<0,$\frac{{{x_1}{x_2}-1}}{{{x_1}{x_2}}}>0$,
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴函数f(x)在区间(1,+∞)上是增函数.

点评 本题主要考查函数奇偶性的应用,以及函数单调性的判断和证明,要求熟练掌握函数单调性的定义及证明过程.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网