题目内容
在△ABC中,AB=,AC=1,,△ABC的面积为,则( )
A.30° B.45° C.60° D.75°
在平面直角坐标平面内,已知点,,是平面内一动点,直线、斜率之积为.
(1)求动点的轨迹的方程;
(2)过点作直线与轨迹交于、两点,为坐标原点,求△面积取最大值时,直线的方程.
已知正项数列为等比数列,且是与的等差中项,若,则该数列的前5项的和为( )
A. B.31 C. D.以上都不正确
若非零向量满足,且,则与的夹角为( )
A. B. C. D.
已知集合,,则为 ( )
A.(0,+) B.(1,+)
C.[2,+) D.[1,+)
函数的最小值是( )
A.1 B. C. D.
某家庭进行理财投资,根据长期收益率市场预测,投资类产品的收益与投资额成正比,投资类产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.
(1)分别写出两类产品的收益与投资额的函数关系;
(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
已知椭圆过点,离心率为,点分别为其左右焦点.
(1)求椭圆的标准方程;
(2)若上存在两个点,椭圆上有两个点满足三点共线,三点共线,且,求四边形面积的最小值.
已知;.
(1)若p是q的必要条件,求m的取值范围;
(2)若是的必要不充分条件,求m的取值范围.