题目内容

14.设抛物线y2=4x的焦点为F,过F且倾斜角为$\frac{π}{4}$的直线交抛物线于A、B两点,则|AB|=8.

分析 根据抛物线解析式确定出焦点F坐标,根据直线AB倾斜角表示出直线AB方程,与抛物线解析式联立消去y得到关于x的一元二次方程,设方程的两根为x1,x2,即A(x1,y1),B(x2,y2),利用根与系数关系及两点间的距离公式求出AB长即可.

解答 解:由题意得:抛物线y2=4x的焦点F为(1,0),
∵直线AB倾斜角为45°,
∴直线AB的斜率为1,即方程为y=x-1,
联立抛物线方程,消去y得:(x-1)2=4x,即x2-6x+1=0,
设方程的两根为x1,x2,即A(x1,y1),B(x2,y2),
则有x1+x2=6,x1x2=1,
则|AB|=$\sqrt{1+1}•\sqrt{36-4}$=8,
故答案为:8.

点评 此题考查了抛物线的简单性质,根与系数关系,两点间的距离公式,以及直线的点斜式方程,熟练掌握抛物线的简单性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网