题目内容
数列1
,2
,3
,4
…前n项的和为( )
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 16 |
A、
| ||||
B、-
| ||||
C、-
| ||||
D、-
|
考点:数列的求和
专题:等差数列与等比数列
分析:利用分组求和法求解.
解答:
解:数列1
,2
,2
,4
…前n项的和:
S=(1+2+3+4+…+n)+(
+
+
+
+…+
)
=
+
=-
+
+1.
故选:B.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 16 |
S=(1+2+3+4+…+n)+(
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 16 |
| 1 |
| 2n |
=
| n(n+1) |
| 2 |
| ||||
1-
|
=-
| 1 |
| 2n |
| n2+n |
| 2 |
故选:B.
点评:本题考查数列的前n项和的求法,是基础题,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关题目
如果函数f(x)=x2+bx+c对任意实数均有f(-x)=f(x),那么( )
| A、f(-2)<f(1)<f(3) |
| B、f(3)<f(-2)<f(1) |
| C、f(-2)<f(3)<f(1) |
| D、f(1)<f(-2)<f(3) |
某算法的程序框图如图所示,则输出j的值是( )

| A、12 | B、11 | C、10 | D、9 |
某校有高一学生300人,高二学生270人,高三学生210人,现教育局督导组欲用分层抽样的方法抽取26名学生进行问卷调查,则下列判断正确的是( )
| A、高一学生被抽到的概率最大 |
| B、高三学生被抽到的概率最大 |
| C、高三学生被抽到的概率最小 |
| D、每名学生被抽到的概率相等 |
以下说法错误的是( )
| A、零向量与任一非零向量平行 |
| B、平行向量方向相同 |
| C、零向量与单位向量的模不相等 |
| D、平行向量一定是共线向量 |
已知|
|=
,|
|=2,
•
=-3,则
与
的夹角是( )
| a |
| 3 |
| b |
| a |
| b |
| a |
| b |
| A、150° | B、120° |
| C、60° | D、30° |
若sin(
-x)=-
,则cos(
+x)的值等于( )
| π |
| 4 |
| 1 |
| 5 |
| π |
| 4 |
A、-
| ||||
B、
| ||||
C、-
| ||||
D、
|
已知函数f(x)=2sin(ωx+
)(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则f(x)的单调递增区间为( )
| π |
| 4 |
A、[-
| ||||
B、[-
| ||||
C、[-
| ||||
D、[-
|
在5件产品中,有3件正品和2件次品,从中任取2件,那么以
为概率的事件是( )
| 7 |
| 10 |
| A、都是正品 |
| B、至少有1件次品 |
| C、恰好有1件次品 |
| D、至多有1件次品 |