题目内容
18.已知曲线C:$\left\{\begin{array}{l}x=\frac{8k}{{1+{k^2}}}\\ y=\frac{{2(1-{k^2})}}{{1+{k^2}}}\end{array}\right.$(k为参数)和直线l:$\left\{\begin{array}{l}x=2+tcosθ\\ y=1+tsinθ\end{array}\right.$(t为参数).(1)将曲线C的方程化为普通方程;
(2)设直线l与曲线C交于A,B两点,且P(2,1)为弦AB的中点,求弦AB所在的直线方程.
分析 (1)由$y=\frac{{2(1-{k^2})}}{{1+{k^2}}}$,得$\frac{y}{2}=-1+\frac{2}{{1+{k^2}}}$,即$\frac{y}{2}+1=\frac{2}{{1+{k^2}}}$,又$x=\frac{8k}{{1+{k^2}}}$,两式相除得$k=\frac{x}{2y+4}$,代入$x=\frac{8k}{{1+{k^2}}}$整理得C的普通方程.
(2)将$\left\{\begin{array}{l}x=2+tcosθ\\ y=1+tsinθ\end{array}\right.$代入$\frac{x^2}{16}+\frac{y^2}{4}=1$,整理得(4sin2θ+cos2θ)t2+(4cosθ+8sinθ)t-8=0.由P为AB的中点,可得$\frac{4cosθ+8sinθ}{{4{{sin}^2}θ+cs{o^2}θ}}=0$.化简可得直线AB的斜率,即可得出AB直线方程.
解答 解:(1)由$y=\frac{{2(1-{k^2})}}{{1+{k^2}}}$,得$\frac{y}{2}=-1+\frac{2}{{1+{k^2}}}$,即$\frac{y}{2}+1=\frac{2}{{1+{k^2}}}$,又$x=\frac{8k}{{1+{k^2}}}$,两式相除得$k=\frac{x}{2y+4}$,
代入$x=\frac{8k}{{1+{k^2}}}$,得$\frac{{8×\frac{x}{2y+4}}}{{1+{{(\frac{x}{2y+4})}^2}}}=x$,整理得$\frac{x^2}{16}+\frac{y^2}{4}=1$,即为C的普通方程.
(2)将$\left\{\begin{array}{l}x=2+tcosθ\\ y=1+tsinθ\end{array}\right.$代入$\frac{x^2}{16}+\frac{y^2}{4}=1$,
整理得(4sin2θ+cos2θ)t2+(4cosθ+8sinθ)t-8=0.
由P为AB的中点,则$\frac{4cosθ+8sinθ}{{4{{sin}^2}θ+cs{o^2}θ}}=0$.
∴cosθ+2sinθ=0,即$tanθ=-\frac{1}{2}$,故${l_{AB}}:y-1=-\frac{1}{2}(x-2)$,即$y=-\frac{1}{2}x+2$,
所以所求的直线方程为x+2y-4=0.
点评 本题考查了参数方程h化为普通方程及其应用、同角三角函数基本关系式、直线方程,考查了推理能力与计算能力,属于中档题.
| A. | a<b<c | B. | b<c<a | C. | c<b<a | D. | c<a<b |
| A. | 0 | B. | 1 | C. | 2 | D. | 4 |
| A. | -1 | B. | 0 | C. | 1 | D. | 3 |
| A. | $-\frac{7}{2}$ | B. | $\frac{9}{2}$ | C. | $\frac{7}{2}$ | D. | $-\frac{9}{2}$ |