题目内容

已知三角形三内角成等差数列,且其面积为10
3
,周长为20,求该三角形的三边长.
考点:等差数列的性质
专题:计算题,等差数列与等比数列,解三角形
分析:设A=60°,三边长为a,b,c,利用三角形面积公式列出关系式,将sinA与已知面积代入求出bc的值,利用余弦定理列出关系式,将cosA的值代入利用完全平方公式变形,把b+c=20-a代入求出a的长,进而确定出b+c的长,与bc的长联立求出b,c的长,即可确定出三角形三边长.
解答: 解:∵三角形三内角成等差数列,∴不妨设A=60°,三边长分别为a,b,c,
根据题意得:S=
1
2
bcsinA=
3
4
bc=10
3
,即bc=40①,
∵a+b+c=20,
∴a2=b2+c2-2bccosA=b2+c2-bc=(b+c)2-3bc=(20-a)2-120,
整理得:40a=280,即a=7,
∴b+c=13②,
联立①②解得:b=5,c=8;b=8,c=5,
则三角形三边长为5,7,8.
点评:此题考查了正弦定理,余弦定理,三角形面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网