题目内容

8.不等式组$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{2x+y≤3}\end{array}\right.$所表示的平面区域的面积为$\frac{5}{6}$.

分析 利用二元一次不等式组的定义作出对应的图象,找出对应的平面区域,结合相应的面积公式进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
则由$\left\{\begin{array}{l}{x=0}\\{x+3y=4}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=\frac{4}{3}}\end{array}\right.$,即A(0,$\frac{4}{3}$),
由$\left\{\begin{array}{l}{x=0}\\{2x+y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$,即B(0,3),
由$\left\{\begin{array}{l}{x+3y=4}\\{2x+y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即C(1,1),
则三角形的面积S=$\frac{1}{2}$|AB|•h=$\frac{1}{2}×$(3-$\frac{4}{3}$)×1=$\frac{1}{2}×\frac{5}{3}$=$\frac{5}{6}$,
故答案为:$\frac{5}{6}$

点评 本题主要考查一元二次不等式组表示平面区域,利用数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网