题目内容
14.已知α,β∈(0,$\frac{π}{2}$),且$\frac{sinα}{α}$<$\frac{sinβ}{β}$,则下列结论正确的是( )| A. | α<β | B. | α+β>$\frac{π}{2}$ | C. | α>β | D. | α+β<$\frac{π}{2}$ |
分析 由$\frac{sinα}{α}$<$\frac{sinβ}{β}$,可得$\frac{αsinα}{{α}^{2}}<\frac{βsinβ}{{β}^{2}}$,利用假设法,证明即可.设αsinα>βsinβ,则α>β,α,β∈(0,$\frac{π}{2}$),可得$\frac{1}{{α}^{2}}<\frac{1}{{β}^{2}}$,可得$\frac{αsinα}{{α}^{2}}<\frac{βsinβ}{{β}^{2}}$成立.可得结论.
解答 解:由$\frac{sinα}{α}$<$\frac{sinβ}{β}$,可得$\frac{αsinα}{{α}^{2}}<\frac{βsinβ}{{β}^{2}}$,
∵α,β∈(0,$\frac{π}{2}$),设αsinα>βsinβ>0,则α>β,
∴$\frac{1}{{α}^{2}}<\frac{1}{{β}^{2}}$,
∴$\frac{αsinα}{{α}^{2}}<\frac{βsinβ}{{β}^{2}}$成立.
故得α>β,
故选C.
点评 本题考查了正弦余弦函数的性质的变形运用能力和化简计算能力.
练习册系列答案
相关题目
5.从2 012名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2 012人中剔除12人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 012人中,每人入选的概率( )
| A. | 不全相等 | B. | 均不相等 | ||
| C. | 都相等,且为$\frac{1}{40}$ | D. | 都相等,且为$\frac{25}{1006}$ |
9.
如图,矩形ABCD中,AB=2BC=4,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻转过程中:
①|BM|是定值;
②点M在圆上运动;
③一定存在某个位置,使DE⊥A1C;
④一定存在某个位置,使MB∥平面A1DE.
其中正确的命题是( )
①|BM|是定值;
②点M在圆上运动;
③一定存在某个位置,使DE⊥A1C;
④一定存在某个位置,使MB∥平面A1DE.
其中正确的命题是( )
| A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ②③④ |
6.用五点作图法作y=2sin4x的图象时,首先描出的五个点的横坐标是( )
| A. | 0,$\frac{π}{2}$,π,$\frac{3π}{2}$,2π | B. | 0,$\frac{π}{4}$,$\frac{π}{2}$,$\frac{3π}{4}$,π | C. | 0,$\frac{π}{8}$,$\frac{π}{4}$,$\frac{3π}{8}$,$\frac{π}{2}$ | D. | 0,$\frac{π}{6}$,$\frac{π}{3}$,$\frac{3π}{2}$,$\frac{2}{3}$π |
3.函数$f(x)=\sqrt{x({3-x})}+\sqrt{x-1}$的定义域为( )
| A. | {x|0≤x≤3} | B. | {x|1≤x≤3} | C. | {x|x≥1} | D. | {x|x≥3} |