题目内容
已知平面α内两条相交直线a,b成角为60°,P为空间中一个定点,则过点P与a,b成角均为60°直线共有 条.
考点:异面直线及其所成的角
专题:空间位置关系与距离
分析:过P作a′∥a,b′∥b,设直线a′、b′确定的平面为α,异面直线a、b成60°角,直线a′、b′所成锐角为60°,过点P与a′、b′都成60°角的直线,可以作3条.
解答:
解:过P作a′∥a,b′∥b,
设直线a′、b′确定的平面为α,
∵异面直线a、b成60°角,
∴直线a′、b′所成锐角为60°
①当直线l在平面α内时,
若直线l平分直线a′、b′所成的钝角,
则直线l与a、b都成60°角;
②当直线l与平面α斜交时,
若它在平面α内的射影恰好落在
直线a′、b′所成的锐角平分线上时,直线l与a、b所成角相等.
此时l与a′、b′所成角的范围为[30°,90°],
适当调整l的位置,可使直线l与a、b也都成60°角,这样的直线l有两条.
综上所述,过点P与a′、b′都成60°角的直线,可以作3条
∵a′∥a,b′∥b,
∴过点P与a′、b′都成60°角的直线,与a、b也都成60°的角.
故答案为:3.
设直线a′、b′确定的平面为α,
∵异面直线a、b成60°角,
∴直线a′、b′所成锐角为60°
①当直线l在平面α内时,
若直线l平分直线a′、b′所成的钝角,
则直线l与a、b都成60°角;
②当直线l与平面α斜交时,
若它在平面α内的射影恰好落在
直线a′、b′所成的锐角平分线上时,直线l与a、b所成角相等.
此时l与a′、b′所成角的范围为[30°,90°],
适当调整l的位置,可使直线l与a、b也都成60°角,这样的直线l有两条.
综上所述,过点P与a′、b′都成60°角的直线,可以作3条
∵a′∥a,b′∥b,
∴过点P与a′、b′都成60°角的直线,与a、b也都成60°的角.
故答案为:3.
点评:本题考查满足条件的直线有多少条的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
已知A(2,
),B(1,2
),则直线AB的倾斜角为( )
| 3 |
| 3 |
| A、45° | B、60° |
| C、120° | D、135° |
函数y=2sin(3x+
)的最小正周期是( )
| π |
| 4 |
A、
| ||
B、
| ||
C、
| ||
D、
|
参数方程
(α为参数)表示的平面曲线是( )
|
| A、直线 | B、椭圆 |
| C、双曲线 | D、抛物线 |