ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=2+2cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+1}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬ÇóÖ±ÏßlÓëÇúÏßCÏཻËù³ÉµÄÏÒµÄÏÒ³¤£®·ÖÎö Ê×ÏÈ£¬½«ÇúÏßC¡¢Ö±Ïßl»¯ÎªÆÕͨ·½³Ì£¬È»ºóÁªÁ¢£¬½áºÏÏÒ³¤¹«Ê½Çó½â£®
½â´ð ½â£º¸ù¾ÝÇúÏßCµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=2+2cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬µÃ$\frac{1}{4}$£¨x-2£©2+y2=1£¬
Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+1}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬µÃy=x-1
´úÈë$\frac{1}{4}$£¨x-2£©2+y2=1£¬ÕûÀí¿ÉµÃ5x2-12x+4=0£¬
¡àx=2»ò$\frac{2}{5}$
¡ày=1»ò-$\frac{3}{5}$
¡àÏÒ³¤$\sqrt{1+1}•|2-\frac{2}{5}|$=$\frac{8\sqrt{2}}{5}$£®
µãÆÀ ±¾ÌâÖØµã¿¼²éÁËÍÖÔ²¡¢Ö±ÏߵIJÎÊý·½³Ì¡¢ÏÒ³¤µÄ¼ÆËãµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®ÒÑÖª£º½Ç¦ÈΪÈñ½Ç£¬ÇÒsin¦È=$\frac{1}{3}$£®
£¨1£©Çósin£¨$\frac{¦Ð}{4}$-¦È£©µÄÖµ£»
£¨2£©Çócos2¦ÈµÄÖµ£®
£¨1£©Çósin£¨$\frac{¦Ð}{4}$-¦È£©µÄÖµ£»
£¨2£©Çócos2¦ÈµÄÖµ£®
20£®ÒÑÖªÊýÁÐ{an}Âú×ã¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐanan+1an+2an+3=24£¬ÇÒa1=1£¬a2=2£¬a3=3£¬Ôòa1+a2+a3+¡+a2015=£¨¡¡¡¡£©
| A£® | 5030 | B£® | 5031 | C£® | 5033 | D£® | 5036 |