题目内容
11.已知P为椭圆$\frac{{y}^{2}}{8}$+$\frac{{x}^{2}}{2}$=1上一点,A、B分别为椭圆的上、下顶点,直线PA、PB分别与直线x=-2交于点C、D,O为坐标原点,则△OCD的面积的最小值为8-4$\sqrt{2}$.分析 设P($\sqrt{2}cosα$,2$\sqrt{2}sinα$),0≤α≤2π,A(0,2$\sqrt{2}$),B(0,-2$\sqrt{2}$),求出直线PA和直线PB,由直线PA、PB分别与直线x=-2交于点C、D,求出C(-2,$\frac{2\sqrt{2}cosα-4sinα+4}{cosα}$),D(-2,-$\frac{4sinα+2\sqrt{2}cosα+4}{cosα}$),由此能求出△OCD的面积的最小值.
解答 解:∵P为椭圆$\frac{{y}^{2}}{8}$+$\frac{{x}^{2}}{2}$=1上一点,A、B分别为椭圆的上、下顶点,
∴P($\sqrt{2}cosα$,2$\sqrt{2}sinα$),0≤α≤2π,A(0,2$\sqrt{2}$),B(0,-2$\sqrt{2}$),
∴直线PA:$\frac{y-2\sqrt{2}}{x}=\frac{2\sqrt{2}(sinα-1)}{\sqrt{2}cosα}$,直线PB:$\frac{y+2\sqrt{2}}{x}$=$\frac{2\sqrt{2}(sinα+1)}{\sqrt{2}cosα}$,
∵直线PA、PB分别与直线x=-2交于点C、D,
∴C(-2,$\frac{2\sqrt{2}cosα-4sinα+4}{cosα}$),D(-2,-$\frac{4sinα+2\sqrt{2}cosα+4}{cosα}$),
∴△OCD的面积S=$\frac{1}{2}×2×$|$\frac{2\sqrt{2}cosα-4sinα+4}{cosα}$+$\frac{4sinα+2\sqrt{2}cosα+4}{cosα}$|=|4$\sqrt{2}$+$\frac{8}{cosα}$|,
∴当cosα=-1时,△OCD的面积的最小值为Smin=8-4$\sqrt{2}$.
故答案为:8-4$\sqrt{2}$.
点评 本题考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意椭圆参数方程、直线方程、三角函数的性质的合理运用.
| A. | (-2,+∞) | B. | [-1,1] | C. | [-1,1]∪[2,+∞) | D. | (-2,1] |
| A. | 68y7 | B. | 112x3y4 | C. | 672x2y5 | D. | 1344x2y5 |
| A. | [$\sqrt{2}$,+∞) | B. | (1,$\frac{\sqrt{5}}{2}$] | C. | [$\frac{\sqrt{5}+1}{2}$,+∞) | D. | [$\frac{\sqrt{10}+\sqrt{2}}{4}$,+∞) |
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |