题目内容

9.已知cosα是方程3x2-x-2=0的根,且α是第三象限角,则$\frac{sin(-α+\frac{3π}{2})cos(\frac{3π}{2}+α)ta{n}^{2}(π-α)}{cos(\frac{π}{2}+α)sin(\frac{π}{2}-α)}$=(  )
A.$\frac{9}{16}$B.-$\frac{9}{16}$C.-$\frac{5}{4}$D.$\frac{5}{4}$

分析 由题意求出cosα的值,进一步求得sinα,得到tanα,然后利用诱导公式化简求得$\frac{sin(-α+\frac{3π}{2})cos(\frac{3π}{2}+α)ta{n}^{2}(π-α)}{cos(\frac{π}{2}+α)sin(\frac{π}{2}-α)}$.

解答 解:由3x2-x-2=0,得x=1或x=$-\frac{2}{3}$,
∵cosα是方程3x2-x-2=0的根,且α是第三象限角,
∴cos$α=-\frac{2}{3}$,sinα=$-\sqrt{1-co{s}^{2}α}=-\sqrt{1-(-\frac{2}{3})^{2}}$=$-\frac{\sqrt{5}}{3}$,tan$α=\frac{\sqrt{5}}{2}$.
则$\frac{sin(-α+\frac{3π}{2})cos(\frac{3π}{2}+α)ta{n}^{2}(π-α)}{cos(\frac{π}{2}+α)sin(\frac{π}{2}-α)}$=$\frac{cosα•sinα•ta{n}^{2}α}{-sinα•cosα}$=-tan2α=$-\frac{5}{4}$.
故选:C.

点评 本题考查三角函数的化简求值,考查同角三角函数的基本关系式及诱导公式的应用,是基础的计算题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网