题目内容
14.已知函数f(x)=Asin(2x+φ)(0<φ<π),若函数f(x+$\frac{π}{6}$)是偶函数,且f($\frac{π}{6}$)=4.(1)求函数f(x)的解析式;
(2)求函数g(x)=f(-x)的单调递减区间.
分析 (1)由已知可得函数f(x)=Asin(2x+φ)的图象关于直线x=$\frac{π}{6}$对称,结合f($\frac{π}{6}$)=4,0<φ<π,求出A和φ,可得函数f(x)的解析式;
(2)函数g(x)=f(-x)=4sin(2x+$\frac{5π}{6}$),结合正弦函数的单调性,可得函数g(x)的单调递减区间.
解答 解:(1)∵函数f(x+$\frac{π}{6}$)是偶函数,
∴函数f(x)=Asin(2x+φ)的图象关于直线x=$\frac{π}{6}$对称,
又由f($\frac{π}{6}$)=4,
可得:A=4,2×$\frac{π}{6}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
即φ=$\frac{π}{6}$+2kπ,k∈Z,
又∵0<φ<π,
∴φ=$\frac{π}{6}$,
∴f(x)=4sin(2x+$\frac{π}{6}$);
(2)函数g(x)=f(-x)=4sin(-2x+$\frac{π}{6}$)=4sin[π-(-2x+$\frac{π}{6}$)]=4sin(2x+$\frac{5π}{6}$);
由$\frac{π}{2}$+2kπ≤2x+$\frac{5π}{6}$≤$\frac{3π}{2}$+2kπ,k∈Z得:
-$\frac{π}{6}$+kπ≤2x+$\frac{5π}{6}$≤$\frac{π}{3}$+2kπ,k∈Z
故函数g(x)的单调递减区间为[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+2kπ],k∈Z
点评 本题考查的知识点是正弦型函数的图象和性质,熟练掌握正弦型函数的图象和性质,是解答的关键.
练习册系列答案
相关题目
9.已知cosα是方程3x2-x-2=0的根,且α是第三象限角,则$\frac{sin(-α+\frac{3π}{2})cos(\frac{3π}{2}+α)ta{n}^{2}(π-α)}{cos(\frac{π}{2}+α)sin(\frac{π}{2}-α)}$=( )
| A. | $\frac{9}{16}$ | B. | -$\frac{9}{16}$ | C. | -$\frac{5}{4}$ | D. | $\frac{5}{4}$ |
6.将函数f(x)=sin(2x+φ)+$\sqrt{3}$cos(2x+φ)(0<φ<π)图象向左平移$\frac{π}{4}$个单位后,得到函数的图象关于点($\frac{π}{2}$,0)对称,则函数g(x)=cos(x+φ)在[-$\frac{π}{2}$,$\frac{π}{6}$]上的最小值是( )
| A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
3.已知a=tan(-$\frac{π}{6}$),b=cos$\frac{23π}{4}$,c=sin(-$\frac{33π}{4}$),则a,b,c的大小关系是( )
| A. | b>a>c | B. | a>b>c | C. | b>c>a | D. | a>c>b |