题目内容

9.数列{an}的前n项和Sn=2n,数列{bn}满足:b1=-1,bn+1=bn+(2n-1).(n∈N*)
(1)求数列{an}的通项an;    
(2)求数列{bn}的通项bn

分析 (1)由an=Sn-Sn-1求出n≥2时的通项公式,已知首项后得答案;
(2)直接利用累加法求数列{bn}的通项bn

解答 解:(1)∵Sn=2n
∴Sn-1=2n-1,(n≥2),
∴${a}_{n}={S}_{n}-{S}_{n-1}={2}^{n}-{2}^{n-1}={2}^{n-1}(n≥2)$,
当n=1时,a1=S1=2不适合上式,
∴${a}_{n}=\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$;
(2)由bn+1=bn+(2n-1),
得b2=b1+1,b3=b2+3,…,bn=bn-1+2n-3(n≥2),
累加得:bn=b1+[1+3+…+(2n-3)]=$-1+\frac{(1+2n-3)(n-1)}{2}={n}^{2}-2n$(n≥2).
b1=-1适合上式,
∴${b}_{n}={n}^{2}-2n$.

点评 本题考查数列递推式,训练了累加法求数列的通项公式,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网