题目内容

20.已知函数f(x)=|x-a|,其中a>0.
(1)当a=1时,求不等式f2(x)≤2的解集;
(2)已知函数g(x)=f(2x+a)+2f(x)的最小值为4,求实数a的值.

分析 (1)当a=1时,不等式f2(x)≤2,即(x-1)2≤2,即可求不等式f2(x)≤2的解集;
(2)x≤0,g(x)单调递减,x≥a,g(x)单调递增,可得g(x)min=2a=4,即可求实数a的值

解答 解:(1)当a=1时,不等式f2(x)≤2,即(x-1)2≤2,
∴1-$\sqrt{2}$≤x≤1+$\sqrt{2}$,
∴不等式的解集为{x|1-$\sqrt{2}$≤x≤1+$\sqrt{2}$};
(2)∵a>0,∴g(x)=|2x|+2|x-a|=$\left\{\begin{array}{l}{4x-2a,x≥a}\\{2a,0<x<a}\\{-4x+2a,x≤0}\end{array}\right.$,
∴x≤0,g(x)单调递减,x≥a,g(x)单调递增,
∴g(x)min=2a=4,∴a=2.

点评 本题考查不等式的解法,考查函数的最小值,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网