ÌâÄ¿ÄÚÈÝ
10£®¶ÔÓÚ²»µÈʽ$\sqrt{{n}^{2}+1}$£¼n+1£¨n¡ÊN*£©£¬Ä³Ñ§ÉúÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÈçÏ£º£¨1£©µ±n=1ʱ£¬$\sqrt{{1}^{2}+1}$£¼1+1£¬²»µÈʽ³ÉÁ¢£»
£¨2£©¼ÙÉèµ±n=k£¨k¡ÊN*£©Ê±²»µÈʽ³ÉÁ¢£¬¼´$\sqrt{{k}^{2}+1}$£¼k+1£¬Ôòµ±n=k+1ʱ£¬$\sqrt{£¨k+1£©^{2}+1}$=$\sqrt{{k}^{2}+2k+2}$$£¼\sqrt{{k}^{2}+2k+2+2k+2}$=$\sqrt{£¨k+2£©^{2}}$=£¨k+1£©+1£»ËùÒÔµ±n=k+1ʱ£¬²»µÈʽ$\sqrt{{n}^{2}+1}$£¼n+1³ÉÁ¢£®
ÉÏÊöÖ¤Ã÷ÖУ¨¡¡¡¡£©
| A£® | n=1ÑéÖ¤²»ÕýÈ· | B£® | ¹éÄɼÙÉè²»ÕýÈ· | ||
| C£® | ´Ón=kµ½n=k+1µÄÍÆÀí²»ÕýÈ· | D£® | Ö¤Ã÷¹ý³ÌÍêÈ«ÕýÈ· |
·ÖÎö ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÎÊÌâµÄ²½ÖèÊÇ£ºµÚÒ»²½£¬ÑéÖ¤µ±n=n0ʱÃüÌâ³ÉÁ¢£¬µÚ¶þ²½¼ÙÉèµ±n=kʱÃüÌâ³ÉÁ¢£¬ÄÇôÔÙÖ¤Ã÷µ±n=k+1ʱÃüÌâÒ²³ÉÁ¢£®¹Ø¼üÊǵڶþ²½ÖÐÒª³ä·ÖÓÃÉϹéÄɼÙÉèµÄ½áÂÛ
½â´ð ½â£ºµ±n=1ʱ£¬×ó±ß=$\sqrt{{1}^{2}+1}$=2£¬ÓÒ±ß=1+1=2£¬¹Êµ±n=1ʱ£¬²»µÈʽ³ÉÁ¢£¬
¼ÙÉèµ±n=k£¨k¡ÊN*£©Ê±²»µÈʽ³ÉÁ¢£¬¼´$\sqrt{{k}^{2}+1}$£¼k+1£¬¼´k2+1£¼£¨k+1£©2£¬
Ôòµ±n=k+1ʱ£¬$\sqrt{£¨k+1£©^{2}+1}$=$\sqrt{{k}^{2}+2k+2}$£¼$\sqrt{£¨k+1£©^{2}+2k+1}$=$\sqrt{£¨k+1£©^{2}+2£¨k+1£©+1-2}$=$\sqrt{£¨k+2£©^{2}-2}$£¼$\sqrt{£¨k+2£©^{2}}$=k+2=£¨k+1£©+1£¬
¹Êµ±n=k+1ʱ£¬²»µÈʽ³ÉÁ¢£¬
×ÛÉÏËùÊö£¬²»µÈʽ$\sqrt{{n}^{2}+1}$£¼n+1£¨n¡ÊN*£©£¬
ÓÉ´Ë¿ÉÒÔÅжϴÓn=kµ½n=k+1µÄÍÆÀí²»ÕýÈ·£¬ÀíÓÉÊÇ£¬Ã»ÓÐÓÃÉϼÙÉ裬
¹ÊÑ¡£ºC
µãÆÀ ±¾Ì⿼²éÊýѧ¹éÄÉ·¨µÄ˼Ï룬ӦÓÃÖÐҪעÒâµÄÊÇÓÃÉϹéÄɼÙÉèµÄ½áÂÛ£¬·ñÔò»áµ¼Ö´íÎó£®ÊôÓÚÖеµÌ⣮