题目内容
【题目】为了选派学生参加“厦门市中学生知识竞赛”,某校对本校2000名学生进行选拔性测试,得到成绩的频率分布直方图(如图).规定:成绩大于或等于110分的学生有参赛资格,成绩110分以下(不包括110分)的学生则被淘汰.
![]()
(1)求获得参赛资格的学生人数;
(2)根据频率分布直方图,估算这2000名学生测试的平均成绩(同组中的数据用该组区间点值作代表);
(3)若知识竞赛分初赛和复赛,在初赛中有两种答题方案:
方案一:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰;
方案二:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被海汰.
已知学生甲只会5道备选题中的3道,那么甲选择哪种答题方案,进入复赛的可能性更大?并说明理由.
【答案】(1)300(2)78.4(3)方案二
【解析】
(1)计算成绩大于或等于110分的学生频率,再求频数即得结果;
(2)根据组中值计算平均数;
(3)分别计算两个方案进入复赛的概率,比较大小确定最终方案.
(1)成绩大于或等于110分的学生频率为![]()
所以获得参赛资格的学生人数为
;
(2)平均成绩为![]()
![]()
(3)方案一:甲进入复赛的概率为
;
方案二:甲进入复赛的概率为![]()
所以甲选方案二答题方案,进入复赛的可能性更大.
【题目】已知椭圆
:
的左、右焦点分别为
,
,若椭圆经过点
,且
的面积为
.
(1)求椭圆
的标准方程;
(2)设斜率为
的直线
与以原点为圆心,半径为
的圆交于
,
两点,与椭圆
交于
,
两点,且
,当
取得最小值时,求直线
的方程.
【题目】在十九大“建设美丽中国”的号召下,某省级生态农业示范县大力实施绿色生产方案,对某种农产品的生产方式分别进行了甲、乙两种方案的改良。为了检查甲、乙两种方案的改良效果,随机在这两种方案中各任意抽取了40件产品作为样本逐件称出它们的重量(单位:克),重量值落在
之间的产品为合格品,否则为不合格品。下表是甲、乙两种方案样本频数分布表。
产品重量 | 甲方案频数 | 乙方案频数 |
| 6 | 2 |
| 8 | 12 |
| 14 | 18 |
| 8 | 6 |
| 4 | 2 |
(1)根据上表数据求甲(同组中的重量值用组中点数值代替)方案样本中40件产品的平均数和中位数
(2)由以上统计数据完成下面
列联表,并回答有多大把握认为“产品是否为合格品与改良方案的选择有关”.
甲方案 | 乙方案 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
参考公式:
,其中
.
临界值表:
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.814 | 5.024 | 6.635 | 10.828 |