题目内容
13.函数$y=\frac{1}{3}{x^3}+b{x^2}+(b+2)x+3$在R上不是单调增函数则b范围为( )| A. | (-1,2) | B. | (-∞,-1]∪[2,+∞) | C. | [-1,2] | D. | (-∞,-1)∪(2,+∞) |
分析 三次函数y=$\frac{1}{3}$x3+bx2+(b+2)x+3的单调性,通过其导数进行研究,故先求出导数,利用其导数恒大于0即可解决问题.
解答 解:∵y=$\frac{1}{3}$x3+bx2+(b+2)x+3,
∴y′=x2+2bx+b+2,
∵f(x)是R上的单调增函数,
∴x2+2bx+b+2≥0恒成立,
∴△≤0,即b2-b-2≤0,
则b的取值是-1≤b≤2.
∴y=$\frac{1}{3}$x3+bx2+(b+2)x+3在R上不是单调增函数,
实数b取值范围是b<-1或b>2,
故选:D.
点评 本题考查函数的单调性及单调区间、利用导数解决含有参数的单调性问题,属于基础题.
练习册系列答案
相关题目
4.
设全集I是实数集R,M={x|x≥3}与N={x|(x-3)(x-1)≤0}都是I的子集(如图所示),则阴影部分所表示的集合为( )
| A. | {x|1<x<3} | B. | {x|1≤x<3} | C. | {x|1<x≤3} | D. | {x|1≤x≤3} |
5.已知△ABC,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$,AD与CE的交点为G,$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,若$\overrightarrow{BG}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$,则λ+μ=( )
| A. | $\frac{2}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{7}$ |