题目内容
14.己知棱长为2的正方体ABCD-A1B1C1D1的一个面A1B1C1D1在一半球底面上,且A,B、C,D四个顶点都在此半球面上,則此半球的体积为( )| A. | 4$\sqrt{6}$π | B. | 2$\sqrt{6}$π | C. | 16$\sqrt{3}$π | D. | 8$\sqrt{6}$π |
分析 先求正方体的底面对角线的长,再求球的半径,然后求半球的体积.
解答 解:正方体的顶点A、B、C、D在半球的底面内,顶点A1、B1、C1、D1在半球球面上,
底面ABCD的中心到上底面顶点的距离就是球的半径$\sqrt{{2}^{2}+(\sqrt{2})^{2}}$=$\sqrt{6}$,
半球的体积:$\frac{1}{2}×\frac{4}{3}π×(\sqrt{6})^{3}$=4$\sqrt{6}$π.
故选:A.
点评 本题考查球内接多面体的知识,考查空间想象能力,是基础题.
练习册系列答案
相关题目
4.已知$\underset{lim}{x→∞}$($\frac{{x}^{2}}{x+1}$-ax-b)=0,其中a,b是常数,则( )
| A. | a=b=1 | B. | a=-1,b=1 | C. | a=1,b=-1 | D. | a=b=-1 |
5.过点M(0,2)的直线l与抛物线y2=-4x交于A,B两点,与x轴交于点C,则有( )
| A. | |MA|+|MB|=2|MC| | B. | |MA|•|MB|=|MC|2 | C. | |MA|=|MB|•|MC| | D. | |MA|2=|MB|2+|MC|2 |
9.设f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x≥0)}\\{4xcosπx-1(x<0)}\end{array}\right.$,g(x)=kx-1(x∈R),若函数y=f(x)-g(x)在x∈[-2,3]内有4个零点,则实数k的取值范围是( )
| A. | (2$\sqrt{2}$,$\frac{11}{3}$) | B. | (2$\sqrt{2}$,$\frac{11}{3}$] | C. | (2$\sqrt{3}$,4) | D. | (2$\sqrt{3}$,4] |
6.若z=1-$\sqrt{2}$i,则复数z+$\frac{1}{z}$在复平面上对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
3.如图是某样本数据的茎叶图,则该样本数据的茎叶图,则该样本数据的中位数( )

| A. | 22 | B. | 25 | C. | 28 | D. | 31 |