题目内容

17.设数列{an}满足a1=1,(n+1)an=(n-1)an-1(n≥2),则数列{an}的通项公式${a_n}=\frac{2}{{n({n+1})}}$.

分析 由(n+1)an=(n-1)an-1化简可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,从而利用累乘法求解.

解答 解:∵(n+1)an=(n-1)an-1
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,
∴$\frac{{a}_{2}}{{a}_{1}}$=$\frac{1}{3}$,$\frac{{a}_{3}}{{a}_{2}}$=$\frac{2}{4}$,
$\frac{{a}_{4}}{{a}_{3}}$=$\frac{3}{5}$,
…,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,
累乘可得,
$\frac{{a}_{2}}{{a}_{1}}$•$\frac{{a}_{3}}{{a}_{2}}$•$\frac{{a}_{4}}{{a}_{3}}$•…•$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$•$\frac{2}{4}$•$\frac{3}{5}$•…•$\frac{n-1}{n+1}$,
即an=$\frac{2}{n(n+1)}$,
故答案为:an=$\frac{2}{n(n+1)}$.

点评 本题考查了数列的性质的判断与应用,同时考查了累乘法的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网