题目内容

1.函数f(x)的导函数为f'(x),若对于定义域内任意x1,x2(x1≠x2),有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}=f'({\frac{{{x_1}+{x_2}}}{2}})$恒成立,则称f(x)为恒均变函数.给出下列函数:
①f(x)=2x+3;
②$f(x)=\frac{1}{x}$;
③f(x)=x2-2x+3;
④f(x)=ex
⑤f(x)=lnx.
其中为恒均变函数的序号是①③(写出所有满足条件的函数的序号)

分析 对于所给的每一个函数,分别计算 $\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$和f′( $\frac{{{x}_{1}+x}_{2}}{2}$)的值,检验二者是否相等,从而根据恒均变函数”的定义,做出判断.

解答 解:对于①f(x)=2x+3,
$\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=$\frac{{2x}_{1}-{2x}_{2}}{{{x}_{1}-x}_{2}}$=2,f′( $\frac{{{x}_{1}+x}_{2}}{2}$)=2,
满足 $\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=f′( $\frac{{{x}_{1}+x}_{2}}{2}$),为恒均变函数.
对于②f(x)=$\frac{1}{x}$,
$\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=$\frac{\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}}{{{x}_{1}-x}_{2}}$=-$\frac{1}{{{x}_{1}x}_{2}}$,f′( $\frac{{{x}_{1}+x}_{2}}{2}$)=-$\frac{4}{{({{x}_{1}+x}_{2})}^{2}}$,
显然不满足 $\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=f′( $\frac{{{x}_{1}+x}_{2}}{2}$),故不是恒均变函数.
对于③f(x)=x2-2x+3,
$\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=$\frac{{(x}_{1}{-x}_{2}){(x}_{1}{+x}_{2}-2)}{{{x}_{1}-x}_{2}}$=x1+x2-2
f′( $\frac{{{x}_{1}+x}_{2}}{2}$)=2•$\frac{{{x}_{1}+x}_{2}}{2}$-2=x1+x2-2,
故满足 $\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=f′( $\frac{{{x}_{1}+x}_{2}}{2}$)为恒均变函数.
对于④f(x)=ex
$\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=$\frac{{{e}^{{x}_{1}}-e}^{{x}_{2}}}{{{x}_{1}-x}_{2}}$,f′( $\frac{{{x}_{1}+x}_{2}}{2}$)=${e}^{\frac{{{x}_{1}+x}_{2}}{2}}$,
显然不满足$\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=f′( $\frac{{{x}_{1}+x}_{2}}{2}$),故不是恒均变函数.
对于⑤f(x)=lnx,
$\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$=$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{{x}_{1}-x}_{2}}$,f′( $\frac{{{x}_{1}+x}_{2}}{2}$)=$\frac{2}{{{x}_{1}+x}_{2}}$,
显然不满足 $\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=f′( $\frac{{{x}_{1}+x}_{2}}{2}$),故不是恒均变函数.
故答案为:①③.

点评 本题主要考查函数的导数运算,“恒均变函数”的定义,判断命题的真假.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网