题目内容
已知向量
=(-2,-6),|
|=
,
•
=-10,则向量
与
的夹角为( )
| a |
| b |
| 10 |
| a |
| b |
| a |
| b |
| A、150° | B、-30° |
| C、120° | D、-60° |
考点:数量积表示两个向量的夹角
专题:平面向量及应用
分析:设向量
与
的夹角为θ,则由cosθ=
的值,求得θ的值.
| a |
| b |
| ||||
|
|
解答:
解:设向量
与
的夹角为θ,
∴cosθ=
=
=-
,
∴θ=120°,
故选:C.
| a |
| b |
∴cosθ=
| ||||
|
|
| -10 | ||||
|
| 1 |
| 2 |
∴θ=120°,
故选:C.
点评:本题主要考查用两个向量的数量积表示两个向量的夹角,根据三角函数的值求角,属于基础题.
练习册系列答案
相关题目
下列属于相关关系的是( )
| A、利息与利率 |
| B、居民收入与储蓄存款 |
| C、电视机产量与苹果产量 |
| D、正方形的边长与面积 |
数列{an}的前n项和是Sn,下列可以判断{an}是等差数列的是( )
| A、Sn=-2n2 |
| B、Sn=-2n2+1 |
| C、Sn=-2n2-1 |
| D、an=-2n2-n |
若数列{an}的前n项和为Sn,且满足Sn=
an-5,则Sn等于( )
| 1 |
| 2 |
| A、3n+1-3 |
| B、3n-3 |
| C、5-5(-1)n |
| D、5(-1)n-5 |
已知两点A(2,3),B(-4,5),则与
共线的单位向量是( )
| AB |
A、
| ||||||||||||||||||
B、
| ||||||||||||||||||
C、
| ||||||||||||||||||
D、
|
函数y=cosπx的图象与函数y=(
)|x-1|(-3≤x≤5)的图象所有交点的横坐标之和等于( )
| 1 |
| 2 |
| A、4 | B、6 | C、8 | D、10 |
若i为虚数单位,图中复平面内点Z,则表示复数
的点是( )

| z |
| 1-i |
| A、E | B、F | C、G | D、H |
设双曲线以椭圆
+
=1长轴的两个端点为焦点,其实轴长为2
,则双曲线的渐近线的斜率为( )
| x2 |
| 25 |
| y2 |
| 9 |
| 5 |
| A、±2 | ||
B、±
| ||
C、±
| ||
D、±
|