题目内容
10.交换积分次序∫${\;}_{1}^{3}$dx∫${\;}_{1}^{x}$f(x,y)dy=${∫}_{1}^{3}d{y∫}_{y}^{3}f(x,y)dx$.分析 绘制出积分区域,在先对x积分,即可写出积分.
解答 解:绘制积分区域如图,则更改积分次序为:${∫}_{1}^{3}d{y∫}_{y}^{3}f(x,y)dx$ ![]()
故答案为 ${∫}_{1}^{3}d{y∫}_{y}^{3}f(x,y)dx$
点评 考察对积分次序的理解,属于基础题.
练习册系列答案
相关题目
20.函数f(x)=ln$\frac{x({e}^{x}-{e}^{-x})}{2}$,则f(x)是( )
| A. | 奇函数,且在(0,+∞)上单调递减 | B. | 奇函数,且在(0,+∞)上单凋递增 | ||
| C. | 偶函数,且在(0,+∞)上单调递减 | D. | 偶函数,且在(0,+∞)上单凋递增 |
1.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{3},0<x≤4}\\{lo{g}_{4}x,x>4}\end{array}\right.$,f(f(-16))=( )
| A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
18.为了得到函数y=3cos2x的图象,只需把函数y=3sin(2x+$\frac{π}{3}$)的图象上所有的点( )
| A. | 向右平行移动$\frac{π}{12}$个单位长度 | B. | 向右平行移动$\frac{π}{6}$个单位长度 | ||
| C. | 向左平行移动$\frac{π}{12}$个单位长度 | D. | 向左平移移动$\frac{π}{6}$个单位长度 |
5.设函数y=f(x)的定义域为D,且对任意a∈D,都有唯一的实数b满足f(b)=2f(a)-b,则该函数可能是( )
| A. | f(x)=$\frac{1}{x}$ | B. | f(x)=|x| | C. | f(x)=2x | D. | f(x)=x+$\frac{1}{x}$ |