题目内容
9.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{-{x}^{2}-2x,x<0}\end{array}\right.$,若f(a)=1,则实数a的值是±1.分析 由函数f(x)为分段函数,则须分a≥0以及a<0两种情况分别代入对应的解析式来求出a,最后综合即可.
解答 解:∵f(a)=1,且f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{-{x}^{2}-2x,x<0}\end{array}\right.$,
∴当a≥0时,有f(a)=2a-1=1,即2a=2,解得a=1.
当a<0时,有f(a)=-a2-2a=1,即(a+1)2=0,解得a=-1.
综上可得:a=±1.
故答案为:±1.
点评 本题考查了对数的运算性质,考查了分类讨论的思想方法,是基础题.
练习册系列答案
相关题目
15.若直线y=1与函数f(x)=2sin2x的图象相交于点P(x1,y1),Q(x2,y2),且|x1-x2|=$\frac{2π}{3}$,则线段PQ与函数f(x)的图象所围成的图形面积是( )
| A. | $\frac{2π}{3}+\sqrt{3}$ | B. | $\frac{π}{3}+\sqrt{3}$ | C. | $\frac{2π}{3}+\sqrt{3}-2$ | D. | $\frac{π}{3}+\sqrt{3}-2$ |
17.某港口水的深度y(m)是时间t(0≤t≤24,单位:h)的函数,记作y=f(t).下面是某日水深的数据:
经长期观察,y=f(t)的曲线可以近似地看成函数y=Asinωt+b的图象.一般情况下,船舶航行时,船底离海底的距离为5m或5m以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水程度(船底离水面的距离)为6.5m,如果该船希望在同一天内安全进出港,请问,它最多能在港内停留( )小时(忽略进出港所需的时间).
| t/h | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| y/m | 10 | 13 | 10 | 7 | 10 | 13 | 10 | 7 | 10 |
| A. | 6 | B. | 12 | C. | 16 | D. | 18 |
14.设a>0,b>0,若a+b=1,则$\frac{1}{a}+\frac{4}{b}$的最小值为( )
| A. | 8 | B. | 9 | C. | 4 | D. | $\frac{1}{4}$ |
1.k>3是方程$\frac{{x}^{2}}{3-k}$+$\frac{{y}^{2}}{k-1}$=1表示双曲线的( )条件.
| A. | 充分但不必要 | B. | 充要 | ||
| C. | 必要但不充分 | D. | 既不充分也不必要 |