题目内容

2.设a>0且a≠l,函数f(x)=$\left\{\begin{array}{l}{{a}^{x+1}-2,x≤0}\\{g(x),x>0}\end{array}\right.$为奇函数,则a=2,g(f(2))=2-.

分析 利用函数是奇函数f(0)=0求出a,然后求解函数值.

解答 解:a>0且a≠l,函数f(x)=$\left\{\begin{array}{l}{{a}^{x+1}-2,x≤0}\\{g(x),x>0}\end{array}\right.$为奇函数,
可知f(0)=0,可得a-2=0,解得a=2.
则函数f(x)=$\left\{\begin{array}{l}{{2}^{x+1}-2,x≤0}\\{2-{2}^{1-x},x>0}\end{array}\right.$,g(f(2))=g(2)=2-$\frac{\sqrt{2}}{2}$.
故答案为:2,2-$\frac{\sqrt{2}}{2}$.

点评 本题考查分段函数的应用,函数值的求法,考查分析问题解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网