题目内容
6.定义在R上的可导函数f(x),其导数为f′(x),则“f′(x)为偶函数”是“f(x)为奇函数”的( )| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 根据充分必要条件的定义以及函数的奇偶性判断即可.
解答 解:若f(x)是奇函数,则其图象关于原点对称,
f′(x)表示图象增减变化情况,应关于y轴对称,
所以f′(x)是偶函数.
反之,若f′(x)是偶函数,如f′(x)=3x2,则f(x)=x3+1满足此条件但不是奇函数.
所以“f′(x)为偶函数”是“f(x)为奇函数”的必要不充分条件,
故选B.
点评 本题考查了充分必要条件,考查函数的奇偶性问题,是一道基础题.
练习册系列答案
相关题目
16.已知数列{an}满足:a1=1且an+1+$\frac{1}{{1+{a_n}}}$=0(n∈N*),则a2018=( )
| A. | 2$ | B. | -$\frac{1}{2}$ | C. | 0 | D. | 1 |
17.下列函数中,既是奇函数,又在[0,1]上是增函数的是( )
| A. | y=|x| | B. | y=x2+1 | C. | y=x3 | D. | y=sinx(x∈[0,$\frac{π}{2}$]) |
14.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( )
| A. | f(-2)<f(π)<f(-3) | B. | f(π)<f(-2)<f(-3) | C. | f(-2)<f(-3)<f(π) | D. | f(-3)<f(-2)<f(π) |
1.已知函数f(x)=|ln(x-1)|,若f(a)=f(b),则a+2b的取值范围为( )
| A. | (4,+∞) | B. | $[3+2\sqrt{2}\;\;,\;\;+∞)$ | C. | [6,+∞) | D. | $(4\;\;,\;\;3+2\sqrt{2}]$ |
11.已知向量$|{\overrightarrow a}|=4,|{\overrightarrow b}|=8,\overrightarrow a$与$\overrightarrow b$的夹角为60°,则$|{2\overrightarrow a+\overrightarrow b}|$=( )
| A. | $8\sqrt{3}$ | B. | $6\sqrt{3}$ | C. | 5 | D. | $\sqrt{19}$ |
15.函数f(x)=x-lnx的单调递减区间是( )
| A. | (0,1) | B. | (0,+∞) | C. | (1,+∞) | D. | (-∞,0)∪(1,+∞) |