ÌâÄ¿ÄÚÈÝ

12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Çãб½ÇΪ¦Á£¨¦Á¡Ù$\frac{¦Ð}{2}$£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+tcos¦Á}\\{y=tsin¦Á}\end{array}}\right.$£¨tΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑcos2¦È-4sin¦È=0£®
£¨I£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÒÑÖªµãP£¨1£¬0£©£®ÈôµãMµÄ¼«×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£©£¬Ö±Ïßl¾­¹ýµãMÇÒÓëÇúÏßCÏཻÓÚA£¬BÁ½µã£¬ÉèÏß¶ÎABµÄÖеãΪQ£¬Çó|PQ|µÄÖµ£®

·ÖÎö £¨¢ñ£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt£¬ÄÜÇó³öÖ±ÏßlµÄÆÕͨ·½³Ì£»ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©Çó³öµãMµÄÖ±½Ç×ø±êΪ£¨0£¬1£©£¬´Ó¶øÖ±ÏßlµÄÇãб½ÇΪ$¦Á=-\frac{3¦Ð}{4}$£¬ÓÉ´ËÄÜÇó³öÖ±ÏßlµÄ²ÎÊý·½³Ì£¬´úÈëx2=4y£¬µÃ${t}^{2}-6\sqrt{2}t+2=0$£¬ÓÉ´ËÀûÓÃΤ´ï¶¨ÀíºÍÁ½µã¼ä¾àÀ빫ʽÄÜÇó³ö|PQ|£®

½â´ð ½â£º£¨¢ñ£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+tcos¦Á}\\{y=tsin¦Á}\end{array}}\right.$£¨tΪ²ÎÊý£©£®
¡àÖ±ÏßlµÄÆÕͨ·½³ÌΪy=tan¦Á•£¨x-1£©£¬
ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑcos2¦È-4sin¦È=0£¬µÃ¦Ñ2cos2¦È-4¦Ñsin¦È=0£¬
¡àx2-4y=0£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2=4y£®
£¨¢ò£©¡ßµãMµÄ¼«×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£©£¬¡àµãMµÄÖ±½Ç×ø±êΪ£¨0£¬1£©£¬
¡àtan¦Á=-1£¬Ö±ÏßlµÄÇãб½ÇΪ$¦Á=-\frac{3¦Ð}{4}$£¬
¡àÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.£¬£¨tΪ²ÎÊý£©$£¬
´úÈëx2=4y£¬µÃ${t}^{2}-6\sqrt{2}t+2=0$£¬
ÉèA£¬BÁ½µã¶ÔÓ¦µÄ²ÎÊýΪt1£¬t2£¬
¡ßQΪÏß¶ÎABµÄÖе㣬
¡àµãQ¶ÔÓ¦µÄ²ÎÊýֵΪ$\frac{{t}_{1}+{t}_{2}}{2}=\frac{6\sqrt{2}}{2}=3\sqrt{2}$£¬
ÓÖP£¨1£¬0£©£¬Ôò|PQ|=|$\frac{{t}_{1}+{t}_{2}}{2}$|=3$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨼°Ó¦Ó㬿¼²éÁ½µã¼ä¾àÀ빫ʽµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì»¥»¯¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø