题目内容

设△ABC的内角A,B,C所对的边长分别为a,b,c,且cosB=
4
5
,b=2,
(1)当A=30°时,求a的值;  
(2)当△ABC的面积为3时,求a,c的值.
考点:正弦定理
专题:解三角形
分析:(1)根据cosB求得sinB,进而利用正弦定理求得a.
(2)利用三角形面积公式求得ac的值,进而利用余弦定理求得a+c的值,最后联立方程求得a和c.
解答: 解:(1)∵△ABC中,cosB=
4
5

∴sinB=
1-cos2B
=
3
5

由正弦定理知
a
sinA
=
b
sinB

∴a=
b
sinB
•sinA=
2
3
5
×
1
2
=
5
3

(2)由S△ABC=
1
2
acsinB=
3
10
ac=3,

∴ac=10      ①
∵cosB=
a2+c2-b2
2ac
=
(a+c)2-2ac-b2
2ac
=
(a+c)2-24
20
=
4
5

∴(a+c)2=40,
∴a+c=2
10
 ②
由①②得:a=
10
,c=
10
点评:本题主要考查了正弦定理和余弦定理的应用.正弦定理和余弦定理是解三角函数常用的方法,应熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网