题目内容
10.已知数列{an}的前n项和Sn=3n2-n,则其通项公式为an=6n-4.分析 根据根据数列的前n项和公式Sn=3n2-n,表示出当n≥2时,前n-1项和Sn-1,然后利用an=Sn-Sn-1得出n≥2时的通项公式,把n=1代入此通项公式检验也满足,从而得到数列的通项公式.
解答 解:当n≥2,且n∈N*时,
an=Sn-Sn-1=(3n2-n)-[3(n-1)2-(n-1)]
=3n2-n-(3n2-6n+3-n+1)
=6n-4,
又S1=a1=3×12-1=2,满足此通项公式,
则数列{an}的通项公式an=6n-4(n∈N*).
故答案为:6n-4(n∈N*)
点评 本题主要考查了等差数列的通项公式,熟练掌握数列的递推式an=Sn-Sn-1是解本题的关键,同时注意要把首项代入通项公式进行验证,属于基础题.
练习册系列答案
相关题目
5.下列三个命题中正确命题的个数为( )
①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;
②两个底面平行且相似,其余各面都是梯形的多面体是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.
①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;
②两个底面平行且相似,其余各面都是梯形的多面体是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.
| A. | O个 | B. | 1个 | C. | 2个 | D. | 3个 |
2.实数a,b,“$\frac{1}{a}$<$\frac{1}{b}$<0“是“a>b“的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
20.已知ξ:N(2017,σ2),若P(2016≤ξ≤2017)=0.2,则P(ξ>2018)等于( )
| A. | 0.1 | B. | 0.2 | C. | 0.3 | D. | 0.4 |