题目内容

2.已知函数$f(x)=4sinx•cos(x-\frac{π}{3})-\sqrt{3}$
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递减区间.

分析 (1)利用三角函数的恒等变换化简函数的解析式,再利用正弦函数的周期性得出结论.
(2)利用正弦函数的单调性,求得函数f(x)的单调递减区间.

解答 解:(1)∵$f(x)=4sinx•cos(x-\frac{π}{3})-\sqrt{3}$=$4sinx•(\frac{1}{2}cosx+\frac{{\sqrt{3}}}{2}sinx)-\sqrt{3}$=$2sinx•cosx+2\sqrt{3}{sin^2}x-\sqrt{3}$
=$sin2x+2\sqrt{3}•\frac{1-cos2x}{2}-\sqrt{3}$=$sin2x-\sqrt{3}cos2x$=$2sin(2x-\frac{π}{3})$,
所以,函数f(x)的最小正周期是$\frac{2π}{2}=π$.
(2)由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{5π}{12}$≤x≤kπ+$\frac{11π}{12}$,
可得函数的减区间为[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.

点评 本题主要考查三角函数的恒等变换及化简求值,正弦函数的周期性和单调性,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网