ÌâÄ¿ÄÚÈÝ
º¯Êýy=sin£¨2x+
£©µÄͼÏóÊÇÓɺ¯Êýy=sinxµÄͼÏó¾¹ý£¬ÏÂÁÐÄÄÁ½´Î±ä»»¶øµÃµ½µÄ£¨¡¡¡¡£©
| ¦Ð |
| 3 |
A¡¢ÏȽ«y=sinxͼÏóÉϸ÷µãµÄºá×ø±êËõ¶Ìµ½ÔÀ´µÄÒ»°ë£¬ÔÙ½«ËùµÃͼÏóÏò×óÆ½ÒÆ
| ||
B¡¢ÏȽ«y=sinxµÄͼÏóÉϸ÷µãµÄºá×ø±êÉ쳤µ½ÔÀ´µÄ2±¶£¬ÔÙ½«ËùµÃͼÏóÏò×óÆ½ºâ
| ||
C¡¢ÏȽ«y=sinxµÄͼÏóÏò×óÆ½ÒÆ
| ||
D¡¢ÏȽ«y=sinxµÄͼÏóÏò×óÆ½ÒÆ
|
¿¼µã£ºº¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»
רÌ⣺Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
·ÖÎö£º¸ù¾Ýº¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬¿ÉµÃ½áÂÛ£®
½â´ð£º
½â£ºÏȽ«y=sinxµÄͼÏóÏò×óÆ½ÒÆ
¸öµ¥Î»£¬¿ÉµÃº¯Êýy=sin£¨x+
£©µÄͼÏó£»
ÔÙ½«ËùµÃͼÏóÉϸ÷µãµÄºá×ø±êËõ¶Ìµ½ÔÀ´µÄÒ»°ë£¬¿ÉµÃº¯Êýy=sin£¨2x+
£©µÄͼÏó£¬
¹ÊÑ¡£ºC£®
| ¦Ð |
| 3 |
| ¦Ð |
| 3 |
ÔÙ½«ËùµÃͼÏóÉϸ÷µãµÄºá×ø±êËõ¶Ìµ½ÔÀ´µÄÒ»°ë£¬¿ÉµÃº¯Êýy=sin£¨2x+
| ¦Ð |
| 3 |
¹ÊÑ¡£ºC£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
É躯Êýf£¨x£©=-x+2£¬x¡Ê[-5£¬5]Èô´ÓÇø¼ä[-5£¬5]ÄÚËæ»úѡȡһ¸öʵÊýx0£¬ÔòËùѡȡµÄʵÊýx0Âú×ãf£¨0£©¡Ü0µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
| A¡¢0.5 | B¡¢0.4 |
| C¡¢0.3 | D¡¢0.2 |
ÒÑÖª¼¯ºÏM={y|y=£¨
£©x£¬x¡ÊR}£¬N={1£¬0£¬-1}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
| 1 |
| 3 |
| A¡¢{1£¬0£¬-1} |
| B¡¢{1£¬-1} |
| C¡¢{1£¬0} |
| D¡¢{1} |
ÈôijÎïÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃÎïÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©

| A¡¢10+6¦Ð |
| B¡¢10+20¦Ð |
| C¡¢14+5¦Ð |
| D¡¢14+20¦Ð |
ÒÑ֪ȫ¼¯U={1£¬2£¬3£¬4£¬5}£¬¼¯ºÏA={2£¬3}£¬B={3£¬4}£¬É輯ºÏM={a£¬b}£¬ÈôM⊆£¨A¡È∁UB£©£¬Ôòa+bµÄ×î´óֵΪ£¨¡¡¡¡£©
| A¡¢6 | B¡¢7 | C¡¢8 | D¡¢9 |
É裨1+x+x2£©n=a0+a1x+a2x2+¡+a2nx2n£¬Ôòa2+a4+¡+a2nµÄֵΪ£¨¡¡¡¡£©
A¡¢
| ||
B¡¢
| ||
| C¡¢3n-2 | ||
| D¡¢3n |