题目内容

已知:数列{an}的通项公式是an=
na
(n+1)b
,其中a、b均为正常数,那么数列{an}是(  )
A、递减数列
B、递增数列
C、常数列
D、增减性不确定的数列
考点:数列递推式
专题:等差数列与等比数列
分析:利用作差法求解.
解答: 解:∵数列{an}的通项公式是an=
na
(n+1)b
,其中a、b均为正常数,
∴an+1-an
=
(n+1)a
(n+2)b
-
na
(n+1)b

=
(n+1)2ab-n(n+2)ab
(n+1)(n+2)b2

=
ab
(n+1)(n+2)b2
>0,
∴数列{an}是递增数列.
故选:B.
点评:本题考查数列的单调性的判断,是基础题,解题时要认真审题,注意作差法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网