题目内容
如图,E、F、G、H是三棱柱对应边上的中点,过此四点作截面EFGH,则截面以下的几何体是( )

| A、五面体 | B、棱锥 | C、棱台 | D、棱柱 |
考点:平面的基本性质及推论
专题:空间位置关系与距离
分析:根据棱柱的结构特征进行判断.
解答:
解:截面以下的几何体满足:
有两个平面互相平行,其它侧面都是平行四边形,
相邻侧面的棱互相平行,
这样的立体图形为四棱柱,
故选:D.
有两个平面互相平行,其它侧面都是平行四边形,
相邻侧面的棱互相平行,
这样的立体图形为四棱柱,
故选:D.
点评:主要考查了棱柱的结构特征,属于容易题.
练习册系列答案
相关题目
给定下列命题:
①“x>1”是“x>2”的充分不必要条件;
②若sinα≠
,则α≠
;
③“公比大于的等比数列是递增数列”的逆否命题;
④命题“?x0∈R,使x02-x0+1≤0”的否定.
其中真命题的序号是( )
①“x>1”是“x>2”的充分不必要条件;
②若sinα≠
| 1 |
| 2 |
| π |
| 6 |
③“公比大于的等比数列是递增数列”的逆否命题;
④命题“?x0∈R,使x02-x0+1≤0”的否定.
其中真命题的序号是( )
| A、①② | B、②④ | C、①③ | D、③④ |
已知命题“p∨q”为真,“¬p”为真,则( )
| A、p真q真 | B、p真q假 |
| C、p假q真 | D、p假q假 |
在平行四边形ABCD中,若|
+
|=|
+
|,则四边形ABCD是( )
| BC |
| BA |
| BC |
| AB |
| A、菱形 | B、矩形 |
| C、正方形 | D、不确定 |
若抛物线y2=4x的焦点是F,准线是l,点M(4,m)是抛物线上一点,则经过点F、M且与l相切的圆一共有( )
| A、0个 | B、1个 | C、2个 | D、4个 |
数列{an}满足:a1=2,an+1=
(n∈N*)其前n项积为Tn,则T2014=( )
| 1+an |
| 1-an |
| A、-6 | ||
B、-
| ||
C、
| ||
| D、6 |
函数f(x)=3cos(3x-
)的最大值是( )
| π |
| 4 |
| A、-1 | B、-3 | C、3 | D、1 |