题目内容

1.纳米级Cu2O由于具有优良的催化性能而受到关注,下表为制取Cu2O的四种方法:
方法a用炭粉在高温条件下还原CuO
方法b用葡萄糖还原新制的Cu(OH)2制备Cu2O
方法c电解法,反应为2Cu+H2O$\frac{\underline{\;电解\;}}{\;}$Cu2O+H2
方法d用肼(N2H4)还原新制的Cu(OH)2
(1)已知:①2Cu(s)+$\frac{1}{2}$O2(g)═Cu2O(s);△H=-169kJ•mol-1
②C(s)+$\frac{1}{2}$O2(g)═CO(g);△H=-110.5kJ•mol-1
③Cu(s)+$\frac{1}{2}$O2(g)═CuO(s);△H=-157kJ•mol-1
则方法a发生的热化学方程式是:2CuO(s)+C(s)=Cu2O(s)+CO(g)△H=+34.5kJ/mol.
(2)方法c采用离子交换膜控制电解液中OH-的浓度而制备纳米Cu2O,装置如图所示:
该离子交换膜为阴离子交换膜(填“阴”或“阳”),该电池的阳极反应式为2Cu-2e-+2OH-=Cu2O+H2O,钛极附近的pH值增大(填“增大”“减小”或“不变”).
(3)方法d为加热条件下用液态肼(N2H4)还原新制Cu(OH)2来制备纳米级Cu2O,同时放出N2.该制法的化学方程式为4Cu(OH)2+N2H4$\frac{\underline{\;\;△\;\;}}{\;}$2Cu2O+N2↑+6H2O.
(4)在相同的密闭容器中,用以上方法制得的三种Cu2O分别进行催化分解水的实验:2H2O(g)$?_{Cu_{2}O}^{光照}$2H2(g)+O2(g)△H>0.水蒸气的浓度随时间t变化如下表所示:
序号
0
  1020304050
T10.0500.04920.04860.04820.04800.0480
T10.0500.04880.04840.04800.04800.0480
T20.100.0940.0900.0900.0900.090
①对比实验的温度:T2>T1(填“>”“<”或“﹦”);
②实验①前20min的平均反应速率 v(O2)=3.5×10-5mol/(L•min).

分析 (1)根据盖斯定律结合热化学方程式的书写方法来书写;
(2)方法c采用离子交换膜控制电解液中OH-的浓度,则只有使用阴离子交换膜才能控制氢氧根离子浓度,在电解池的阳极发生失电子的氧化反应;钛极是阴极发生氢离子得电子的还原反应,据此分析附近pH值变化;
(3)根据“液态肼(N2H4)还原新制Cu(OH)2来制备纳米级Cu2O,同时放出N2”来书写化学方程式;
(4)①该反应的正反应是吸热反应,升高温度平衡正向移动,水蒸气的转化率增大;
②先计算水蒸气反应速率,再根据同一反应中同一段时间内各物质的反应速率之比等于其计量数之比计算氧气反应速率.

解答 解:(1)已知:①2Cu(s)+$\frac{1}{2}$O2(g)=Cu2O(s);△H=-169kJ•mol-1
②C(s)+$\frac{1}{2}$O2(g)=CO(g);△H=-110.5kJ•mol-1
③Cu(s)+$\frac{1}{2}$O2(g)═CuO(s)△H=-157kJ•mol-1
用炭粉在高温条件下还原CuO制取Cu2O和CO的化学方程式为C(s)+2CuO (s)=Cu2O(s)+CO(g)
该反应可以是②-③×2-$\frac{1}{2}$×①,反应的焓变是-110.5kJ•mol-1-(-157kJ•mol-1×2)-$\frac{1}{2}$×(-169kJ•mol-1)=34.5kJ•mol-1
故答案为:C(s)+2CuO (s)=Cu2O(s)+CO(g)△H=+34.5kJ•mol-1
(2)方法c采用离子交换膜控制电解液中OH-的浓度,则只有使用阴离子交换膜才能控制氢氧根离子浓度;在电解池中,当阳极是活泼电极时,该电机本身发生失电子得还原反应,在碱性环境下,金属铜失去电子的电极反应为2Cu-2e-+2OH-=Cu2O+H2O,钛极是阴极发生氢离子得电子的还原反应,所以消耗氢离子,则PH值增大,故答案为:阴;2Cu-2e-+2OH-=Cu2O+H2O;增大;
(3)根据题目信息:液态肼(N2H4)还原新制Cu(OH)2来制备纳米级Cu2O,同时放出N2,得出化学方程式为:4Cu(OH)2+N2H4$\frac{\underline{\;\;△\;\;}}{\;}$2Cu2O+N2↑+6H2O,故答案为:4Cu(OH)2+N2H4$\frac{\underline{\;\;△\;\;}}{\;}$2Cu2O+N2↑+6H2O;
(4)①该反应的正反应是吸热反应,升高温度平衡正向移动,水蒸气的转化率增大,②和③相比,③转化率高,所以T2>T1,故答案为:>;
②前20min内水蒸气反应速率=$\frac{0.050-0.0486}{20-0}$mol/(L.min)=7×10-5mol/(L•min),
同一反应中同一段时间内各物质的反应速率之比等于其计量数之比,则氧气反应速率=3.5×10-5mol/(L•min),故答案为:3.5×10-5mol/(L•min).

点评 本题考查物质制备,为高频考点,涉及化学平衡有关计算、电解原理、盖斯定律等知识点,侧重考查学生分析计算能力,难点是电极反应式的书写,题目难度中等.

练习册系列答案
相关题目
2.化合物甲由X、Y两种元素组成,含甲的矿石在自然界储量较多,称取一定量的甲,加足量浓盐酸使其完全溶解,将溶液分为A、B两等份,向A中加足量NaOH溶液,过滤、洗涤、灼烧得到红棕色固体28g,经分析甲与该红棕色固体组成元素相同;向B中加8.0g铜粉充分反应后经过滤、洗涤、低温干燥,得固体1.6g.
(1)甲的化学式3FeO•2Fe2O3,写出足量浓盐酸溶解甲的离子反应方程式3FeO•2Fe2O3+18H+=3Fe2++4Fe3++9H2O.
(2)设计实验验证溶液A中金属X离子的价态取少量A溶液,滴加铁氰化钾溶液,有蓝色沉淀,则含Fe2+;另取少量A溶液,滴加KSCN溶液,呈血红色,则含Fe3+
(3)有同学猜测能用含金属元素X的单质和二氧化碳在高温下反应制取化合物甲,请从氧化还原反应的角度说明该猜测的合理性合理,Fe具有还原性,CO2中+4价碳具有氧化性,可能发生氧化还原反应.
(4)金属元素X和碳元素形成的化合物X3C,又称为渗碳体.是具有高化学稳定性的新型还原剂,同时还可以作为催化剂应用于石油化工、汽车尾气处理等领域.工业上可用粉碎后甲的矿石和预热后的CH4、H2混合气体在一定温度、压强条件下发生反应来制备,写出该反应方程式3Fe7O9+13H2+7CH4=7Fe3C+27H2O.X3C不溶于冷水、热水、稀酸,可溶于热的浓硝酸,写出X3C和热的浓硝酸反应的化学方程式Fe3C+22HNO3(浓)$\frac{\underline{\;\;△\;\;}}{\;}$3Fe(NO33+CO2+13NO2↑+11H2O.
6.亚氯酸钠(NaClO2)是重要漂白剂.探究小组开展如下实验,回答下列问题:
实验Ⅰ:制取NaClO2晶体按如图装置进行制取.

已知:NaClO2饱和溶液在低于38℃时析出NaClO2•3H2O,高于38℃时析出NaClO2,高于60℃时NaClO2分解成NaClO3和NaCl.
(1)用50%双氧水配制30%的H2O2溶液,需要的玻璃仪器除玻璃棒、胶头滴管、烧杯外,还需要量筒(填仪器名称);
(2)装置C的作用是防止D瓶溶液倒吸到B瓶中(或安全瓶);
(3)装置B内生成的ClO2气体与装置D中混合溶液反应生成NaClO2,生成NaClO2的反应方程式为2ClO2+2NaOH+H2O2=2NaClO2+O2+2H2O.
(4)如果撤去D中的冷水浴,可能导致产品中混有的杂质是NaClO3和NaCl;
(5)反应后,经以下步骤可从装置D的溶液获得NaClO2晶体.请补充完整操作iii.
i.55℃蒸发结晶;   ii.趁热过滤;  iii.用45℃左右的热水洗涤3遍(热水温度高于38℃,低于60℃);  iv.低于60℃干燥,得到成品.
实验Ⅱ:样品杂质分析与纯度测定
(6)上述实验制得的NaClO2晶体中含少量Na2SO4.产生Na2SO4最可能的原因是a;
a.B中有SO2气体产生,并有部分进入D装置内
b.B中浓硫酸挥发进入D中与NaOH中和
c.B中的硫酸钠进入到D装置内
(7)测定样品中NaClO2的纯度.测定时进行如下实验:准确称一定质量的样品,加入适量蒸馏水和过量的KI晶体,在酸性条件下发生如下反应:ClO2-+4I-+4H+═2H2O+2I2+Cl-,将所得混合液稀释成100mL待测溶液.
取25.00mL待测溶液,加入淀粉溶液做指示剂,用c mol•L-1 Na2S2O3标准液滴定至终点,测得消耗标准溶液体积的平均值为V mL(已知:I2+2S2O32-═2I-+S4O62-).
①确认滴定终点的现象是滴到最后一滴,溶液蓝色恰好褪去且半分钟内不复原;
②所称取的样品中NaClO2的物质的量为c•V•10-3mol(用含c、V的代数式表示).
13.氨基甲酸铵(NH2COONH4)是一种易水解、易分解的白色固体,熔点59℃,密度1.6g∕cm3.某小组模拟制备氨基甲酸铵,反应如下(且温度对反应的影响比较灵敏):
2NH3(g)+CO2(g)?NH2COONH4(s)△H<0

注:①CCl4与液体石蜡均为惰性介质;
(1)如用图1装置制取氨气,写出制取氨气的化学方程式2NH4Cl+Ca(OH)2$\frac{\underline{\;\;△\;\;}}{\;}$CaCl2+2H2O+2NH3↑.
(2)制备氨基甲酸铵的装置图2所示,把NH3和CO2通入四氯化碳中,不断搅拌混合,生成的氨基甲酸铵的小晶体悬浮在CCl4中. 当悬浮物较多时,停止制备.
①发生器用冰水冷却的原因是降低温度,提高反应物转化率(或降低温度,防止因反应放热造成产物分解)
②液体石蜡鼓泡瓶的作用是通过观察气泡,调节NH3与CO2通入比例(或通过观察气泡,控制NH3与CO2的反应速率).
③从反应后的混合物中分离出产品的实验方法是过滤(填写操作名称).为了得到干燥产品,应采取的方法是c(填写选项序号).
a.常压加热烘干           b.高压加热烘干         c.减压40℃以下烘干
(3)此实验操作装置有一个缺陷,如何改进在图2的出气导管末加一个尾气处理装置;
(4)取因部分变质而混有碳酸氢铵的氨基甲酸铵样品5.000g,用足量氢氧化钡溶液充分处理后,过滤、洗涤、干燥,测得沉淀为1.5760g.则样品中氨基甲酸铵的质量分数为87.36%.( 精确到2位小数)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网