题目内容
20.碘化钠是实验室中常用的分析试剂,工业上用铁屑还原法制备NaI的流程如图所示.请回答下列问题:
(1)判断反应①中碘是否反应完全的方法是取少量反应后的溶液于试管中,滴入几滴淀粉溶液,若溶液未变蓝,则证明碘已反应完全;反之,碘未反应完全(或取少量反应后的溶液于试管中,滴入几滴CCl4,振荡、静置,若下层液体呈无色,证明碘已反应完全;若下层液体呈紫红色,证明碘未反应完全).
(2)操作Ⅰ的名称是过滤.
(3)反应①的化学方程式为3I2+6NaOH═5NaI+NaIO3+3H2O.
(4)反应②中NaIO3被Fe单质还原为NaI,同时生成Fe(OH)3,写出该反应的化学方程式并用双线桥法表示此反应的电子转移的方向及数目
(5)在反应②中若有99g NaIO3被还原,则转移电子的物质的量为3mol.
分析 制备NaI的流程:碘与NaOH溶液反应生成NaI、NaIO3,加入Fe与NaIO3发生氧化还原反应生成NaI、氢氧化铁,操作I为过滤,固体为氢氧化铁,②过滤后溶液中主要含NaI,分离、提纯得到NaI.
(1)判断反应①中碘是否反应完全,本质为检验碘单质的存在,碘与淀粉作用显示蓝色,碘在四氯化碳中易溶,在四氯化碳中显示紫红色,据此分析解答;
(2)分离固体和液体的方法为过滤,分离固体氢氧化铁、铁粉和溶液;
(3)反应①为碘单质和氢氧化钠的反应,化合价升高和降低的元素均是I元素,化合价由0价分别变化为+5价、-1价,根据得失电子守恒和原子守恒书写方程式;
(4)反应②中NaIO3被Fe单质还原为NaI,同时生成Fe(OH)3,氧化剂为NaIO3,还原剂为Fe,两者的物质的量之比是1:2,该反应转移电子为6,根据得失电子守恒和原子守恒书写方程式;
(5)反应②的化学方程式是2Fe+NaIO3+3H2O=2Fe(OH)3↓+NaI,根据得失电子守恒计算.
解答 解:(1)淀粉遇碘变蓝,反应后加淀粉无现象即可说明反应结束,则判断反应①中碘是否反应完全的方法为取少量反应后的溶液于试管中,滴入几滴淀粉溶液,若溶液未变蓝,则证明碘已反应完全;反之,碘未反应完全,(或取少量反应后的溶液于试管中,滴入几滴CCl4,振荡、静置,若下层液体呈无色,证明碘已反应完全;若下层液体呈紫红色,证明碘未反应完全),
故答案为:取少量反应后的溶液于试管中,滴入几滴淀粉溶液,若溶液未变蓝,则证明碘已反应完全;反之,碘未反应完全(或取少量反应后的溶液于试管中,滴入几滴CCl4,振荡、静置,若下层液体呈无色,证明碘已反应完全;若下层液体呈紫红色,证明碘未反应完全);
(2)由制备流程可知,碘与NaOH溶液反应生成NaI、NaIO3,加入Fe与NaIO3发生氧化还原反应生成NaI、氢氧化铁,操作I为过滤,
故答案为:过滤;
(3)反应①为碘单质和氢氧化钠的反应,化合价升高和降低的元素均是I元素,化合价升高的I元素对应的产物NaIO3,化合价降低的I元素对应的产物为NaI,根据得失电子守恒,氧化剂和还原剂的物质的量之比是5:1,所以在反应的3molI2中,有$\frac{1}{3}$mol的I2做还原剂,有$\frac{5}{3}$mol的I2做氧化剂,反应的方程式为:3I2+6NaOH═5NaI+NaIO3+3H2O,
故答案为:3I2+6NaOH═5NaI+NaIO3+3H2O;
(4)反应②中NaIO3被Fe单质还原为NaI,同时生成Fe(OH)3,该反应中,NaIO3中碘元素的化合价由+5价变为-1价,所以NaIO3是氧化剂,Fe单质中Fe元素化合价由0价升高到+3价,被氧化,根据得电子与失电子个数相等,两者的物质的量之比是1:2,则电子转移的方向和数目为:
,故答案为:
;
(5)反应②的化学方程式是2Fe+NaIO3+3H2O=2Fe(OH)3↓+NaI,NaIO3中碘元素的化合价由+5价变为-1价,若有99g NaIO3被还原,转移电子为$\frac{99g}{198g/mol}$×[(+5)-(-1)]=3mol,
故答案为:3.
点评 本题考查NaI的制备实验,明确制备流程中发生的反应及操作为解答的关键,涉及氧化还原反应及碘的特性,注重基础知识的考查,注意守恒思想的应用,题目难度中等.
| A. | 聚丙烯的结构简式为: | B. | 丙烷分子的球棍模型为: | ||
| C. | 四氯化碳分子的电子式为: | D. | 苯的最简式为C6H6 |
| 物 质 | 所需试剂 | 离子方程式 |
| FeSO4(CuSO4) | ||
| Na2SO4(NaHCO3) | . |
| 容器编号 | 起始时各物质物质的量/mol | 达到平衡时体系能量的变化 | ||
| A | B | C | ||
| ① | 2 | 1 | 0 | 0.75Q kJ |
| ② | 0.4 | 0.2 | 1.6 | |
| A. | 容器①、②中反应的平衡常数均为36 | |
| B. | 容器②中反应达到平衡时放出的热量为0.05QkJ 达到平衡时,两个容器中Y2的物质的量浓度均为1.5 mol•L-1 | |
| C. | 向容器①中通入氦气,平衡时A的转化率不变 | |
| D. | 其他条件不变,若容器②保持恒容绝热,则达到平衡时C的体积分数小于$\frac{2}{3}$ |
| A. | 电子云表示电子在核外单位体积的空间出现的机会多少 | |
| B. | 同一原子处于激发态时的能量一定高于基态时的能量 | |
| C. | 各能级包含的原子轨道数按s、p、d、f的顺序依次为1、3、5、7 | |
| D. | 1个原子轨道里最多只能容纳2个电子,且自旋方向相同 |
I、已知2NO(g)+O2(g)═2NO2(g)△H=b kJ•mol-1;CO的燃烧热△H=c kJ•mol-1.写出消除汽车尾气中NO2的污染时,NO2与CO反应的热化学方程式2NO2(g)+4CO(g)=N2(g)+4CO2(g)△H=a-b+2c kJ•mol-1.
II、一定条件下,在一密闭容器中,用传感器测得该反应在不同时间的NO和CO浓度如表:
| 时间/s | 0 | 1 | 2 | 3 | 4 | 5 |
| c(NO)/mol•L-1 | 1.00 | 0.8 | 0.64 | 0.55 | 0.5 | 0.5 |
| c(CO)/mol•L-1 | 3.50 | 3.30 | 3.14 | 3.05 | 3.00 | 3.00 |
(2)前2s内的平均反应速率υ(N2)=0.09mol/(L•s)(保留两位小数,下同);此温度下,该反应的平衡常数为0.03mol•L-1.
(3)采用低温臭氧氧化脱硫脱硝技术,同时吸收SO2和NOx,获得(NH4)2SO4的稀溶液,
①常温条件下,此溶液的PH=5,则$\frac{c(N{{H}_{4}}^{+})}{c(N{H}_{3}•{H}_{2}O)}$=1.7×104(已知该温度下NH3•H2O的Kb=1.7×10-5)
②向此溶液中再加入少量 (NH4)2SO4固体,$\frac{c(N{{H}_{4}}^{+})}{c(S{{O}_{4}}^{2-})}$的值将变大(填“变大”、“不变”或“变小”)
(4)设计如图1装置模拟传感器测定CO与 NO反应原理.
①铂电极为正极(填“正极”或“负极”).
②负极电极反应式为CO+O2--2e-=CO2
III、如图2所示,无摩擦、无质量的活塞1、2将反应器隔成甲、乙两部分,在25℃和101kPa下实现平衡时,各部分体积分别为V甲、V乙.此时若去掉活塞1,不引起活塞2的移动.则x=1.5,V甲:V乙=3:1.