题目内容

20.一定温度范围内用氯化钠熔浸钾长石(主要成份为KAlSi3O8)可制得氯化钾,主要反应是:NaCl(l)+KAlSi3O8(s)?KCl(l)+NaAlSi3O8(s)
完成下列填空:
(1)上述反应涉及的第三周期元素中,离子半径最小的是Al3+;Cl原子与Si原子可构成有5个原子核的分子,其分子的空间构型为正四面体.
(2)用最详尽描述核外电子运动状态的方式,表示氧离子核外电子的运动状态
(3)Na和O2反应形成Na2O和Na2O2的混合物,阴阳离子的个数比为1:2;NaAlSi3O8改写成氧化物形式是Na2O•Al2O3•6SiO2
(4)某兴趣小组为研究上述反应中钾元素的熔出率(液体中钾元素的质量占样品质量分数)与温度的关系,进行实验(保持其它条件不变),获得如下数据:


时间/h
熔出率
温度
1.52.53.03.54.0
800℃0.0540.0910.1270.1490.165
830℃0.4810.5750.6260.6690.685
860℃0.5150.6240.6710.6900.689
950℃0.6690.7110.7130.7140.714
分析数据可以得出,氯化钠熔浸钾长石是吸热反应(填“放热”或“吸热”);在950℃时,欲提高熔出钾的速率可以采取的一种措施是充分搅拌,将钾长石粉碎成更小的颗粒.
(5)Na(l)+KCl(l)?NaCl(l)+K(g)是工业上冶炼金属钾常用的方法,该方法可行的原因是根据勒夏特列原理,将钾蒸气分离出来(降低了产物的浓度),化学平衡向正反应方向移动.
(6)铝可用于冶炼难熔金属,利用铝的亲氧性,还可用于制取耐高温的金属陶瓷.例如将铝粉、石墨和二氧化钛按一定比例混合均匀,涂在金属表面上,然后在高温下煅烧,可在金属表面形成耐高温的涂层TiC,该反应的化学方程式为4Al+3TiO2+3C $\frac{\underline{\;高温\;}}{\;}$2Al2O3+3TiC.

分析 (1)电子层结构相同的离子,核电荷数越大离子半径越小,离子电子层越多离子半径越大;Cl原子与Si原子可构成有5个原子核的分子为SiCl4
(2)核外电子轨道排布图可以详尽描述核外电子运动状态的方式;
(3)Na2O和Na2O2的阴阳离子数目之比均为1:2;硅酸盐的氧化物表示方法:先写活泼金属氧化物,然后是不活泼的金属氧化物,再是非金属氧化物二氧化硅,最后是水,注意元素原子比例关系不变;
(4)由表中数据可知,温度越高钾元素的熔出率,说明升高温度,平衡向正反应方向移动,该转化过程没有气体参与,应使反应物充分接触提高反应速率;
(5)根据勒夏特列原理分析;
(6)铝粉、石墨和二氧化钛按一定比例混合均匀,在高温下煅烧形成耐高温的涂层TiC,由元素守恒开还生成氧化铝.

解答 解:(1)电子层结构相同的离子,核电荷数越大离子半径越小,离子电子层越多离子半径越大,故Cl->Na+>Al3+;Cl原子与Si原子可构成有5个原子核的分子为SiCl4,Si形成4个Si-Cl键,没有孤对电子,硅为正四面体构型,
故答案为:Al3+;正四面体;
(2)用最详尽描述核外电子运动状态的方式,表示氧离子核外电子的运动状态:
故答案为:
(3)Na2O和Na2O2的阴阳离子数目之比均为1:2,故二者混合物中阴阳离子数目之比为1:2;
NaAlSi3O8改写成氧化物形式是Na2O•Al2O3•6SiO2
故答案为:1:2;Na2O•Al2O3•6SiO2
(4)由表中数据可知,温度越高钾元素的熔出率越高,说明升高温度,平衡向正反应方向移动,升高温度平衡向吸热方向移动,故正反应为吸热反应,
该转化过程没有气体参与,使反应物充分接触可以提高反应速率,可以充分搅拌,将钾长石粉碎成更小的颗粒,
故答案为:吸热;充分搅拌,将钾长石粉碎成更小的颗粒;
(5)根据勒夏特列原理,将钾蒸气分离出来(降低了产物的浓度),化学平衡向正反应方向移动,
故答案为:根据勒夏特列原理,将钾蒸气分离出来(降低了产物的浓度),化学平衡向正反应方向移动;
(6)铝粉、石墨和二氧化钛按一定比例混合均匀,在高温下煅烧形成耐高温的涂层TiC,由元素守恒开还生成氧化铝,反应方程式为:4Al+3TiO2+3C $\frac{\underline{\;高温\;}}{\;}$2Al2O3+3TiC,
故答案为:4Al+3TiO2+3C $\frac{\underline{\;高温\;}}{\;}$2Al2O3+3TiC.

点评 本题考查核外电子排布、微粒半径比较、空间构型判断、化学平衡影响因素、陌生方程式书写、对信息获取能力等,难度中等,是对所学知识的综合运用,需要学生具备扎实的基础与运用知识分析解决问题的能力.

练习册系列答案
相关题目
3.某二元化合物甲有刺鼻气味,极易被水和酸吸收,是一类重要的火箭燃料.将3.20g甲加热至完全分解,得到一种常见的气体单质和4.48L的H2(已折算成标准状况);已知甲分子内各原子均达到稳定结构.工业上用尿素[CO(NH22]投料到按一定比例混合的NaClO与NaOH混合溶液中反应可制得甲,同时得到副产品碳酸钠等物质.
(1)写出甲的分子式N2H4
(2)适量氯气通入NaOH溶液中可以得到上述混合溶液,写出该反应的离子反应方程式:Cl2+2OH-=ClO-+Cl-+H2O.
(3)工业上常用甲使锅炉内壁的铁锈转化为结构较致密的磁性氧化铁(Fe3O4),以减慢锅炉内壁的锈蚀.其化学方程式为N2H4+6Fe2O3=N2↑+4Fe3O4+2H2O.
(4)已知:Cu2O+2H+═Cu+Cu2++H2O.
①甲与新制Cu(OH)2之间能发生反应,从氧化还原反应的角度说明其合理性N2H4中N元素为-2价,处于较低价态具有还原性,而Cu(OH)2中Cu元素为+2价,处于最高价态,具有氧化性;.
②甲与新制Cu(OH)2充分反应,有红色固体乙生成,写出乙的成分Cu或Cu、Cu2O或Cu2O(写出所有可能),请设计实验方案检验乙的成分取红色固体乙ag,加入足量稀硫酸充分反应后,过滤、洗涤、干燥、称量的bg沉淀,通过a、b的数量关系判断即可,若a=b,固体乙的成分是Cu;若$\frac{64a}{144}$=b,固体乙的成分是Cu2O,若$\frac{64a}{144}$<b<a,固体乙的成分是Cu和Cu2O.
8.某固体甲[成分为M3Z2(OH)a(CO3b]可用作塑料阻燃剂,该盐分解产生大量的CO2可以作为原料制备有机产品.取甲46g高温灼烧至恒重,得到11.2L CO2(标准状况)和22.2g仅含两种金属氧化物的固体乙,其中Z的氧化物既溶于强酸又溶于强碱,向乙中加入足量的稀硫酸所得产物中含有MSO4.请回答:
(1)甲灼烧至恒重的化学方程式Mg3Al2(OH)2(CO35 $\frac{\underline{\;高温\;}}{\;}$3MgO+Al2O3+5 CO2↑+H2O↑(M、Z用元素符号表示)
(2)甲能用作塑料阻燃剂的原因甲分解吸热且产生大量二氧化碳,同时还生成耐高温的MgO和Al2O3覆盖在塑料表面.
(3)工业上利用CO2和H2在一定条件下反应合成甲醇.已知下列反应:
①CO2(g)+3H2(g)$\frac{\underline{\;催化剂\;}}{\;}$CH3OH(g)+H2O(g)△H1
②2H2(g)+O2(g)═2H2O(1)△H2
③H2O(g)═H2O(1)△H3
写出气态甲醇完全燃烧生成CO2(g)和气态水的热化学方程式:2CH3OH(g)+3O2(g)=2CO2(g)+4H2O(g)△H=3△H2-2△H1-6△H3 (用△H1、△H2、△H3表示△H)
(4)反应CO2(g)+3H2(g)$\frac{\underline{\;催化剂\;}}{\;}$CH3OH(g)+H2O(g),它的有关数据如图1所示,反应物起始的物质的量之比$\frac{n({H}_{2})}{n(C{O}_{2})}$=1.5或$\frac{n({H}_{2})}{n(C{O}_{2})}$=2
下列说法正确的是BC.
A.曲线Ⅰ对应的反应物起始物质的量之比为1.5
B.单位时间内消耗H2的物质的量与消耗H2O的物质的量之比为3:1时,反应达到平衡状态
C.a点对应的H2的平衡转化率为90%
D.b点对应的平衡常数K值大于c点
(5)CO2(g)+3H2(g)$\frac{\underline{\;催化剂\;}}{\;}$CH3OH(g)+H2O(g)在体积为2L的固定绝热的密闭容器中加入1 molCH3OH和1 molH2O,第4 min达到平衡,反应中c(CO2)的变化情况如图2所示.
在第5 min时向体系中再充入0.2molCO2和0.4molH2(其它条件不变),
第8 min达到平衡,此时c(H2)=c(CH3OH).
请在图2中画出5到9 min的c(CO2)浓度示意曲线.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网