题目内容
4.天津“8.12“爆炸中扩散的CN-造成部分水体污染.某小组欲检测污水中CN-的浓度并模拟电化学法除去CN-.探究I 检测CN-浓度
资料:碱性条件下发生离子反应:2CN-+5H202+90H-═2CO32-+N2+6H20
实验装置如图1(其中加热、夹持装置省略).(不考虑污水中其它离子反应)
(1)加入药品之前的操作是检查装置气密性;C中试剂是浓H2S04
(2)实验步骤如下:
| 步骤1 | 关闭K1,打开K2,滴入足量H2O2溶液,对B加热.充分反应后,停止加热 |
| 步骤2 | 关闭K2,用注射器穿过B装置的胶塞注入 稀H2S04溶液 |
| 步骤3 | 打开K1,通入N2 |
(4)为了使检测更加准确,上述(2)中操作要特别注意一些事项.请写出至少一条加稀H2S04时要缓慢注入(要缓慢通人N2或给B加热时温度不能过高或加入稀H2SO4,要足量).
探究Ⅱ电化学法处理CN-的影响因素由如图2装置模拟电化学法实验,有关结果如表.
| 实验序号 | 电极(X) | NaCl溶液浓度 (mol/L) | 甲中石墨表面通入气体 | 电流计读数 (A) |
| (1) | Fe | 0.1 | 空气 | I |
| (2) | Al | 0.1 | 空气 | 1.5I |
| (3) | Fe | 0.1 | O2 | 2I |
| (4) | Al | 0.5 | 空气 | 1.6I |
①X电极名称:负极;
②实验(1)中X换成Zn,则电流计读数的范围为I~1.5I
③若乙装置中阳极产生无毒无害物质,其电极方程式为2CN-+12OH--10e-=2CO32-+N2+6H2O;该实验说明电化学法处理CN-,影响处理速率的因素有负极的金属材料和甲中电解质的浓度(至少两条).
分析 本实验是利用在碱性条件下双氧水将CN-氧化成碳酸根离子,再用稀硫酸与碳酸根反应生成二氧化碳,用碱石灰吸收生成的二氧化碳,根据装有碱石灰的干燥管的质量的变化确定二氧化碳的质量,根据碳元素守恒可计算出的物质的量,进而确定浓度,在实验过程中为准确测量二氧化碳的质量,要排除空气中的二氧化碳的干扰,以及要把装置产生的二氧化碳让碱石灰充分吸收,所以要在装置里通入氮气,
(1)由于该实验是有气体参与反应的,所以实验开始前要检查装置气密性;从B装置中出来的气体中有水蒸气,能被碱石灰吸收,会对实验结果产生影响,所以气体要干燥;
(2)在加过双氧后,要关闭K2,再向B中加足量的稀硫酸,与碳酸根离子反应;
(3)根据分析可知,计算CN-的浓度,需称得的质量是反应前后D装置的质量;
(4)为了使二氧化碳能充分被碱石灰吸收,加稀H2S04时要缓慢注入(要缓慢通人N2或给B加热时温度不能过高或加入稀H2SO4,要足量);
(5)①根据原电池原理,活泼金属做原电池的负极;
②锌的活泼性介于铝和铁之间,根据表中数据可知,金属越活泼,电流计的值越大,据此答题;
③乙装置中阳极是发生氧化反应生成无毒无害的氮气和碳酸根离子,通过比较负极的金属材料和甲中电解质的浓度进行分析答题;
解答 解:本实验是利用在碱性条件下双氧水将CN-氧化成碳酸根离子,再用稀硫酸与碳酸根反应生成二氧化碳,用碱石灰吸收生成的二氧化碳,根据装有碱石灰的干燥管的质量的变化确定二氧化碳的质量,根据碳元素守恒可计算出的物质的量,进而确定浓度,在实验过程中为准确测量二氧化碳的质量,要排除空气中的二氧化碳的干扰,以及要把装置产生的二氧化碳让碱石灰充分吸收,所以要在装置里通入氮气,
(1)由于该实验是有气体参与反应的,所以实验开始前要检查装置气密性,从B装置中出来的气体中有水蒸气,能被碱石灰吸收,会对实验结果产生影响,所以气体要干燥,所以C中试剂是浓H2S04,
故答案为:检查装置气密性;浓H2S04;
(2)在加过双氧后,要关闭K2,再向B中加足量的稀硫酸,与碳酸根离子反应,
故答案为:关闭K2;稀H2S04;
(3)根据分析可知,计算CN-的浓度,需称得的质量是反应前后D装置的质量,
故答案为:反应前后D装置的质量;
(4)为了使二氧化碳能充分被碱石灰吸收,加稀H2S04时要缓慢注入(要缓慢通人N2或给B加热时温度不能过高或加入稀H2SO4,要足量),
故答案为:加稀H2S04时要缓慢注入(要缓慢通人N2或给B加热时温度不能过高或加入稀H2SO4,要足量);
(5)①根据原电池原理,活泼金属做原电池的负极,
故答案为:负极;
②锌的活泼性介于铝和铁之间,根据表中数据可知,金属越活泼,电流计的值越大,所以电流计读数的范围为I~1.5I,
故答案为:I~1.5I;
③乙装置中阳极是发生氧化反应生成无毒无害的氮气和碳酸根离子,电极反应式为2CN-+12OH--10e-=2CO32-+N2+6H2O,通过比较表中的数据可知,影响处理速率的因素有负极的金属材料和甲中电解质的浓度,
故答案为:2CN-+12OH--10e-=2CO32-+N2+6H2O;负极的金属材料和甲中电解质的浓度.
点评 本题考查了检测污水中CN-的浓度并模拟电化学法除去CN-,侧重于学生的分析、计算能力的考查,学生要清楚在研究一个变量引起速率变化的时候,其它的量应该相同,另还要学会以用对比实验,来得出结论,有一定的难度.
| A. | KHCO3和MgCO3 | B. | K2CO3和Na2CO3 | C. | MgCO3和Na2CO3 | D. | KHCO3和NaHCO3 |
| A. | 1000mL 50.0g | B. | 950mL 47.5g | C. | 950mL 30.4g | D. | 1000mL 32.0g |
| A. | 15 | B. | 16 | C. | 17 | D. | 18 |
| 指标 项目 | 优等品 | 一等品 | 合格品 |
| 外 观 | 白色结晶,无可见机械杂质 | 无可见机械杂质 | |
| 氮(N)含量 | ≥21.0% | ≥21.0% | ≥20.5% |
[观察外观]该硫酸铵化肥无可见机械杂质.
[实验检测]
(1)通常实验室检验某样品是否为铵盐,是将样品与B(填序号,下同)共热,并用C或E检验产生的气体.
A.强酸 B.强碱 C.湿润的红色石蕊试纸D.湿润的蓝色石蕊试纸
E.用蘸有浓盐酸的玻璃棒 F.用蘸有浓硫酸的玻璃棒
(2)若按图所示装置进行实验.仪器a的名称是分液漏斗;烧瓶内发生反应的离子方程式为:NH4++OH-$\frac{\underline{\;\;△\;\;}}{\;}$NH3↑+H2O.
(3)实验过程中,需往烧瓶中加入足量浓氢氧化钠溶液并充分加热,原因是:使硫酸铵充分反应完全转化为NH3,且全部进入烧杯乙.
[交流讨论]
(4)某同学根据此实验测得的数据,计算硫酸铵化肥的含氮量偏高(>21.2%),请分析实验装置中存在一个明显缺陷是:甲、乙装置间缺一个干燥装置.
[探究结论]
(5)用改进后的实验装置重新进行实验.称取13.5g硫酸铵化肥样品,测得实验前后乙装置增重3.40g.该化肥不是(填“是”或“不是”)一等品.
(2)2Ag(s)+$\frac{1}{2}$O2(g)═Ag2O(s),△H=-31.0kJ/mol
则ZnO(s)+2Ag(s)═Zn(s)+Ag2O(s)的△H等于( )
| A. | -317.3kJ/mol | B. | +317.3 kJ/mol | C. | -379.3kJ/mol | D. | -332.8kJ/mol |
(1)图1为碳及其氧化物的变化关系图,若①变化是置换反应则其化学方程式可为(写一个即可)C+H2O$\frac{\underline{\;高温\;}}{\;}$H2+CO;写出实验室检验CO2气体的离子反应方程式:①③
(2)汽车尾气中的一氧化碳是大气污染物,可通过反应:CO(g)+$\frac{1}{2}$O2?CO(g)降低其浓度.某温度下,在两个容器中进行上述反应,容器中各物质的起始浓度及正逆反应速率关系如下表所示.请填写表中的空格.
| 容器编号 | c(CO)/mol.L-1 | c(O2)/mol.L-1 | (CO2)/mol.L-1 | v(正)和v(逆)比较 |
| Ⅰ | 2.0×10-4 | 4.0×10-4 | 4.0×10-2 | v(正)=v(逆) |
| Ⅱ | 3.0×10-4 | 4.0×10-4 | 5.0×10-2 | v(正)>v(逆) |
CH4在催化剂作用下实现第一步,也叫CH4不完全燃烧,1gCH4不完全燃烧反应放出2.21kJ热量,写出该反应的热化学方程式2CH4(g)+O2(g)=2CO(g)+4H2(g)△H=-70.72kJ•mol-1.
(4)甲醇是一种可再生能源,具有开发和应用的广阔前景,工业上可用(3)转化中得到的合成气制备甲醇.反应为CO(g)+2H2(g)?CH3OH(g) 某温度下,在容积为2L的密闭容器中进行该反应,其相关数据见图3:
①根据图3计算,从反应开始到t min时,用H2浓度变化表示的平均反应速率v(H2)=$\frac{1}{5t}$mol/(L•min)
②t min至2t min时速率变化的原因可能是反应受热或使用了催化剂;
③3t min时对反应体系改变了一个条件,至4t min时CO的物质的量为0.5mol,
请画出图3中3tmin 到4t min内CO的物质的量随时间变化的曲线.
(5)某同学按图所示的装置用甲醇燃料电池(装置I)进行电解的相关操作,以测定铜的相对原子质量,其中c电极为铜棒,d电极为石墨,X溶液为500mL 0.4mol/L硫酸铜溶、液.当装置II中某电极上收集到标准状况下的气体V1mL时,另一电极增重mg(m<12.8).
①装置I中、H+向a极(填“a”或“b”)移动;b电极上发生的反应为CH3OH-6eˉ+H2O=CO2+6H+.
②铜的相对原子质量的表达式为$\frac{11200m}{{V}_{1}}$ (用m和V1的代数式表示).