题目内容
19.研究氮氧化物与悬浮在大气中海盐粒子的相互作用时,同温度下涉及如下反应:a、2NO(g)+Cl2(g)?2ClNO(g)△H1<0 其平衡常数为K1
b、2NO2(g)+NaCl(s)?NaNO3(s)+ClNO(g)△H2<0 其平衡常数为K2
(1)4NO2(g)+2NaCl(s)?2NaNO3(s)+2NO(g)+Cl2(g)△H3的平衡常数K=$\frac{{{K}^{2}}_{2}}{{K}_{1}}$(用K1、K2表示).△H3=2H2-△H1(用△H1、△H2表示).
(2)为研究不同条件对反应a的影响,在恒温条件下,向2L恒容密闭容器中加入0.2mol NO和0.1mol Cl2,10min时反应a达到平衡.测得10min内V(ClNO)=7.5×10-3mol•L-1•min-1,则平衡后n(Cl2)=0.025mol,NO的转化率α1=75%.其它条件保持不变,反应(1)在恒压条件下进行,平衡时NO的转化率为α2,α1<α2(填“>”“<”或“=”),平衡常数K1不变(填“增大”“减小”或“不变”).若要使K1减小,可采用的措施是升高温度.
分析 (1)已知:a、NO(g)+Cl2(g)?2ClNO(g),
b、2NO2(g)+NaCl(s)?NaNO3(s)+ClNO(g),
由盖斯定律,b×2-a可得:4NO2(g)+2NaCl(s)?2NaNO3(s)+2NO(g)+Cl2(g),则该反应平衡常数为b平衡常数平方与a的商;
(2)测得10min内v(ClNO)=7.5×10-3mol•L-1•min-1,则△n(ClNO)=7.5×10-3mol•L-1•min-1×10min×2L=0.15mol,由方程式计算参加反应NO、氯气的物质的量,进而计算平衡时氯气的物质的量、NO的转化率;
正反应为气体物质的量减小的反应,恒温恒容下条件下,到达平衡时压强比起始压强小,其他条件保持不变,反应1在恒压条件下进行,等效为在恒温恒容下的平衡基础上增大压强,平衡正向移动;
平衡常数只受温度影响,温度不变,平衡常数不变,正反应为放热反应,升高温度平衡逆向移动,平衡常数减小.
解答 解:(1)a、2NO(g)+Cl2(g)?2ClNO(g)△H1<0 其平衡常数为K1
b、2NO2(g)+NaCl(s)?NaNO3(s)+ClNO(g)△H2<0 其平衡常数为K2
由盖斯定律,b×2-a可得:4NO2(g)+2NaCl(s)?2NaNO3(s)+2NO(g)+Cl2(g),则该反应平衡常数K=$\frac{{{K}^{2}}_{2}}{{K}_{1}}$,则△H3=2H2-△H1,
故答案为:$\frac{{{K}^{2}}_{2}}{{K}_{1}}$;2H2-△H1;
(2)测得10min内v(ClNO)=7.5×10-3mol•L-1•min-1,则△n(ClNO)=7.5×10-3mol•L-1•min-1×10min×2L=0.15mol,
由方程式可知,参加反应氯气的物质的量为0.15mol×$\frac{1}{2}$=0.075mol,故平衡时氯气的物质的量为0.1mol-0.075mol=0.025mol;
参加反应NO物质的量为0.15mol,则NO的转化率为 $\frac{0.15mol}{0.2mol}$×100%=75%;
正反应为气体物质的量减小的反应,恒温恒容下条件下,到达平衡时压强比起始压强小,其他条件保持不变,反应1在恒压条件下进行,等效为在恒温恒容下的平衡基础上增大压强,平衡正向移动,NO转化率增大,故转化率α1<α2;
平衡常数只受温度影响,温度不变,平衡常数不变,正反应为放热反应,升高温度平衡逆向移动,平衡常数减小,
故答案为:0.025;75%;<;不变;升高温度.
点评 本题考查化学平衡的计算,为高频考点,把握盖斯定律应用、K的表达式及计算、平衡移动为解答的关键,侧重分析与应用能力的考查,注意K只与温度有关,题目难度不大.
| 编号 | 热化学方程式 | 化学平衡常数 |
| ① | CO(g)+2H2(g)?CH3OH(g)△H1 | K1 |
| ② | 2CH3OH(g)?CH3OCH3(g)+H2O(g)△H2=-24kJ•mol-1 | K2 |
| ③ | CO(g)+H2O(g)?CO2(g)+H2(g)△H3=-41kJ•mol-1 | K3 |
(1)已知反应①中的相关的化学键键能数据如下:
| 化学键 | H-H | C-O | C=O | H-O | C-H |
| E/(kJ.mol-1) | 436 | 343 | 1076 | 465 | 413 |
(2)该工艺的总反应为3CO(g)+3H2(g)?CH3OCH3(g)+CO2(g)△H
该反应△H=-263 kJ•mol-1,化学平衡常数K=K12•K2•K3(用含K1、K2、K3的代数式表示).
(3)下列措施中,能提高CH3OCH3产率的有AD.
A.分离出二甲醚 B.升高温度
C.改用高效催化剂 D.增大压强
(4)工艺中反应①和反应②分别在不同的反应器中进行,无反应③发生.该工艺中反应③的发生提高了CH3OCH3的产率,原因是反应③消耗了反应②中的产物H2O,使反应②的化学平衡向正反应方向移动,从而提高CH3OCH3的产率.
(5)以$\frac{n({H}_{2})}{n(CO)}$=2 通入1L的反应器中,一定条件下发生反应:4H2(g)+2CO(g)?CH3OCH3(g)+H2O(g)△H,其CO的平衡转化率随温度、压强变化关系如图所示.下列说法正确的是CD.
A.该反应的△H>0
B.若在p2和316℃时反应达到平衡,则CO的转化率小于50%
C.若在p3和316℃时反应达到平衡,H2的转化率等于50%
D.若在p3和316℃时,起始时$\frac{n({H}_{2})}{n(CO)}$=3,则达平衡时CO的转化率大于50%
E.若在p1和200℃时,反应达平衡后保持温度和压强不变,再充入2mol H2和1mol CO,则平衡时二甲醚的体积分数增大
(6)某温度下,将8.0mol H2和4.0mol CO充入容积为2L的密闭容器中,发生反应:4H2(g)+2CO(g)?CH3OCH3(g)+H2O(g),反应达平衡后测得二甲醚的体积分数为25%,则该温度下反应的平衡常数K=2.25.
(1)已知反应CO(g)+2H2(g)?CH3OH(g)△H=-99kJ•mol-1中的相关化学键能如表:
| 化学键 | H-H | C-O | C≡O | H-O | C-H |
| E/(kJ•mol-1) | 436 | 343 | x | 465 | 413 |
(2)甲醇作为一种重要的化工原料,既可以作为燃料,还可用于合成其它化工原料.在一定条件下可利用甲醇羰基化法制取甲酸甲酯,其反应原理可表示为:CH3OH(g)+CO(g)?HCOOCH3(g)△H=-29.1kJ•mol-1.向体积为2L的密闭容器中充入2mol CH3OH(g) 和2mol CO,测得容器内的压强(p:kPa)随时间(min)的变化关系如图1中Ⅰ、Ⅱ、Ⅲ曲线所示:
①Ⅱ和Ⅰ相比,改变的反应条件是使用催化剂.
②反应Ⅰ在5min时达到平衡,在此条件下从反应开始到达到平衡时v(HCOOCH3)=0.10mol•L-1•min-1.
③反应Ⅱ在2min时达到平衡,平衡常数K(Ⅱ)=2L•mol-1.在体积和温度不变的条件下,在上述反应达到平衡Ⅱ时,再往容器中加入1mol CO和2mol HCOOCH3后v(正)< v(逆) (填“>”“<”“﹦”),原因是浓度商Qc=$\frac{1.5}{0.5•1}$=3>2=K反应向逆方向进行,故v(正)<v(逆).
④比较反应Ⅰ的温度(T1)和反应Ⅲ的温度(T3)的高低:T1>T3(填“>”“<”“﹦”),判断的理由是此反应为放热反应,降温,平衡向正向进行(或反应Ⅰ达平衡时所需的时间比反应Ⅲ达平衡时所需的时间短,反应速率快,故T1温度更高).
(3)超音速飞机在平流层飞行时,尾气中的NO会破坏臭氧层.科学家正在研究利用催化技术将尾气中的NO和CO转变成CO2和N2.某研究小组在实验室用某新型催化剂对CO、NO催化转化进行研究,测得NO转化为N2的转化率随温度、CO混存量的变化情况如图2所示,利用以下反应填空:
NO+CO?N2+CO2(有CO) 2NO?N2+O2(无CO)
①若不使用CO,温度超过775℃,发现NO的分解率降低,其可能的原因为此反应为放热反应,升高温度反应更有利于向逆反应方向进行.
②在$\frac{n(NO)}{n(CO)}$=1的条件下,应控制最佳温度在870℃左右.
| A. | 纤维素、蛋白质、油脂都是高分子化合物 | |
| B. | 糖类、蛋白质、油脂都是由C、H、O三种元素组成的 | |
| C. | 油脂有油和脂肪之分,但都属于酯 | |
| D. | 只用淀粉溶液就可鉴别市售食盐是否为加碘盐 |
| A. | 水解平衡正向移动 | B. | 各微粒浓度均变小(除H2O外) | ||
| C. | 溶液中离子数目增多 | D. | $\frac{c(N{a}^{+})}{c(C{O}_{3}^{2-})}$比值增大 |