题目内容

20.工业上可以以煤和水为原料通过一系列转化变为清洁能源氢气或工业原料甲醇.
(1)用煤制取氢气的反应是:C(s)+2H2O(g)$\frac{\underline{\;高温\;}}{\;}$ CO2(g)+2H2(g)△H>0
若已知碳的燃烧热a和氢气的燃烧热b不能(填“能”或“不能”)求出上述反应的△H.若能则求出其△H(若不能请说明理由):因为上述反应与氢气燃烧热的反应中水的状态不同.
(2)工业上也可以仅利用上述反应得到的CO2和H2进一步合成甲醇,反应方程式为:
CO2(g)+3H2(g)?CH3OH(g)+H2O(g)△H<0,
在一恒温恒容密闭容器中充入1mol CO2和3 mol H2进行上述反应.测得CO2和CH3OH(g)浓度随时间变化如图1所示.
ⅰ.该温度下的平衡常数为5.33.10min后,保持温度不变,向该密闭容器中再充入1mol CO2(g)和1mol H2O(g),则平衡正向(填“正向”、“逆向”或“不”)移动.
ⅱ.对于基元反应aA+bB?cC+dD而言,其某一时刻的瞬时速率计算公式如下:正反应速率为V=k•c(A)a•c(B)b;逆反应速率为V=k•c(C)c•c(D)d其中k、k为速率常数.求该反应进行到第10min时k:k=3:16.
(3)工业上利用水煤气合成甲醇燃料,反应为CO(g)+2H2(g)?CH3OH(g)△H<0.在一定条件下,将l mol CO和2mol H2通入密闭容器中进行反应,当改变某一外界条件(温度或压强)时,CH3OH的体积分数φ(CH3OH)变化趋势如图2所示:
①平衡时,M点CH3OH的体积分数为10%.则CO的转化率为25%.
②X轴上a点的数值比b点小(填“大”或“小”).Y轴表示温度(填“温度”或“压强”),判断的理由是随着Y值的增加,CH3OH的体积分数φ(CH3OH)减小,平衡逆向移动,故Y表示温度.

分析 (1)反应热与物质的聚集状态有关,聚集状态不同,反应热不同;
(2)ⅰ.计算平衡时氢气、水的浓度,再根据K=$\frac{c(C{H}_{3}OH)×c({H}_{2}O)}{c(C{O}_{2})×{c}^{3}({H}_{2})}$计算平衡常数;
保持温度不变,向该密闭容器中再充入1mol CO2(g)和1mol H2O(g),相当于增大压强,增压平衡向气体系数小的方向移动;
ⅱ.平衡时满足V正=V逆,v=k•c(A)a•c(B)b;V=k•c(C)c•c(D)d,则k逆:k正=$\frac{c(C{H}_{3}OH)×c({H}_{2}O)}{c(C{O}_{2})×{c}^{3}({H}_{2})}$=K;
(3)①根据三行式计算得到;
②根据图示信息:X轴上a点的数值比b点小,随着Y值的增加,CH3OH的体积分数φ(CH3OH)减小,结合平衡移动原理回答.

解答 解:(1)反应热与物质的聚集状态有关,聚集状态不同,反应热不同,上述反应与氢气燃烧热的反应中水的状态不同,所以不能求出上述反应的焓变;
故答案为:不能;因为上述反应与氢气燃烧热的反应中水的状态不同;
(2)ⅰ平衡时甲醇为0.75mol/L、二氧化碳为0.25mol/L,则:
               CO2(g)+3H2(g)?CH3OH(g)+H2O(g)
起始浓度(mol/L):1       3          0       0
变化浓度(mol/L):0.75    2.25       0.75    0.75
平衡浓度(mol/L):0.50    0.75       0.75    0.75
则平衡常数K=$\frac{c(C{H}_{3}OH)×c({H}_{2}O)}{c(C{O}_{2})×{c}^{3}({H}_{2})}$=$\frac{0.75×0.75}{0.25×0.7{5}^{2}}$=$\frac{16}{3}$=5.33;
保持温度不变,向该密闭容器中再充入1mol CO2(g)和1mol H2O(g),相当于增大压强,增压平衡向气体系数小的方向移动,即向正方向移动;
故答案为:5.33;正向;
ⅱ平衡时满足V正=V逆,v=k•c(A)a•c(B)b;V=k•c(C)c•c(D)d
则k逆:k正=$\frac{c(C{H}_{3}OH)×c({H}_{2}O)}{c(C{O}_{2})×{c}^{3}({H}_{2})}$=K=3:16;
故答案为:3:16;
(3)①设CO的转化量是x,则
        CO(g)+2H2(g)?CH3OH(g);
初始量:1mol      2mol      0
变化量:x         2x      x
平衡量:1-x      2-2x     x
平衡时,CH3OH的体积分数为10%,则$\frac{x}{1-x+2-2x+x}$×100%=10%,x=0.25,所以CO的转化率为$\frac{0.25mol}{1mol}$×100%=25%,故答案为:25%;
②根据图示信息:X轴上a点的数值比b点小,随着Y值的增加,CH3OH的体积分数φ(CH3OH)减小,平衡逆向移动,故Y表示温度,故答案为:小;温度;随着Y值的增加,CH3OH的体积分数φ(CH3OH)减小,平衡逆向移动,故Y表示温度.

点评 本题为综合题,涉及反应热的计算、化学平衡平衡移动影响因素、化学平衡常数计算、平衡移动原理的应用,题目难度中等,明确化学平衡常数的概念及表达式为解答关键,本题也可以利用三段式计算,试题培养了学生的分析能力及化学计算能力.

练习册系列答案
相关题目
11.你被遗忘在火星上,如何生存下去等待救援呢?
(1)获得氢气.向火箭燃料液态联氨(N2H4)中加入铱催化剂,分解生成氮气和氢气.
已知:3N2H4(l)?4NH3(g)+N2(g)△H=-336.6kJ•mol-1
N2(g)+3H2(g)?2NH3(g)△H=-92.4kJ•mol-1
则N2H4(l)?N2(g)+2H2(g)△H=-50.6kJ•mol-1,该反应平衡常数的表达式为$\frac{[{N}_{2}][{H}_{2}]^{2}}{[{N}_{2}{H}_{4}]}$.
(2)获得氧气.火星大气中有稀薄的CO2
以碱溶液为电解质可实现如下转化2CO2$\frac{\underline{\;电解\;}}{\;}$2CO+O2,该反应在一定条件下能自发进行的原因是△S>0,阴极的反应式为2CO2+4e-+2H2O=2CO+4OH-
(3)获得水.火星上含有高浓度高氯酸根的有毒卤水,可对其进行生物降解.
Ⅰ.在微生物的催化下,ClO4-可被CH3COO-还原,过程如图1所示.CH3COO-也可作为碳元素的来源,促进微生物生长.

①该过程总反应的离子方程式为ClO4-+CH3COO-+H+=2CO2+2H2O+Cl-
②CH3COO-的浓度对ClO4-降解程度的影响如图2所示,则12小时后,CH3COO-浓度小于0.4g/L的条件下,ClO4-的降解几乎停滞的原因是CH3COO-浓度过低,不能促进微生物生长,失去催化作用,反应速率显著降低.
Ⅱ.高氯酸、盐酸和硝酸的酸性在水溶液中差别不大.某温度下,这三种酸在冰醋酸中的电离平衡常数如表所示.冰醋酸做溶剂,这三种酸酸性最强的是HClO4.在冰醋酸中,盐酸的电离方程式为HCl?H++Cl-
HClO4HClHNO3
Ka1.6×10-51.6×10-94.2×10-10
8.随着化石能源的大量开采以及污染的加剧,污染气体的治理和开发利用日益迫切.
(1)Bunsen热化学循环制氢工艺由下列三个反应组成;
SO2(g)+I2(g)+2H2O(g)═2HI(g)+H2SO4(l)△H=a kJ/mol    ①
2H2SO4(l)═2H2O(g)+2SO2(g)+O2(g)△H=b kJ/mol    ②
2HI(g)═H2(g)+I2(g)△H=c kJ/mol        ③
则2H2O(g)═2H2(g)+O2(g)△H=(2a+b+2c)kJ/mol
(2)CO2 和CH4 是两种重要的温室气体,以表面覆盖有Cu2Al2O4 的二氧化钛为催化剂.可以将CO2 和CH4直接转化为乙酸.

①在不同温度下催化剂的催化效率与乙酸的生成速率如图Ⅰ所示,该反应体系应将温度控制在250℃左右.
②将Cu2Al2O4 溶解在稀硝酸中的离子方程式为3Cu2Al2O4+32H++2NO3-=6Cu2++6Al3++2NO↑+16H2O.
(3)甲醇(CH3OH)被称为21世纪的新型燃料.在体积为V L的某反应容器中,amolCO与2amolH2 在催化剂作用下反应生成甲醇:
CO(g)+2H2(g)?CH3OH(g),CO的平衡转化率与温度的关系如图Ⅱ所示:
①该反应是放热(填“放热”或“吸热”)反应
②在其他条件不变的情况下,反应容器中再增加amol CO与2amolH2,达到新平衡时,CO的转化率增大(填“增大”、“减小”或“不变”).
③100℃,反应CH3OH(g)?CO(g)+2H2(g) 的平衡常数为$\frac{{a}^{2}}{{V}^{2}}$(用含有a、V的代数表示).
(4)某实验小组设计了如图Ⅲ所示的甲醇燃料电池装置.
①该电池工作时,OH- 向b (填“a”或“b”)极移动
②工作一段时间后,测得该溶液的pH减小,该电池负极反应的电极反应式为:CH3OH+8OH--6e-=CO32-+6H2O.
15.使用SNCR脱硝技术的主反应为:4NH3(g)+4NO(g)+O2(g)$\stackrel{催化剂}{?}$ 4N2(g)+6H2O(g)△H副反应及773K时平衡常数如表所示:
反应△H(kJ•mol-1平衡常数(K)
4NH3 (g)+5O2 (g)?4NO (g)+6H2O (g)-905.51.1×1026mol•L-1
4NH3 (g)+4O2 (g)?2N2O (g)+6H2O (g)-1104.94.4×1028
4NH3 (g)+3O2 (g)?2N2 (g)+6H2O (g)-1269.07.1×1034L•mol-1
(1)主反应△H=-1632.5kJ•mol-1,773K时主反应平衡常数K=4.6×1043L•mol-1
(2)图1表示在密闭体系中进行实验,测定不同温度下,在相同时间内各组分的浓度.

①图中a、b、c三点,主反应速率最大的是c.
②试解释N2浓度曲线先上升后下降的原因先上升:反应还未到达平衡状态,温度越高,化学反应速率越快,单位时间内N2浓 度越大;后下降:达到平衡状态后,随着温度升高,因反应正向放热,平衡逆向移动,且随温度升高有副产物的生成,N2浓度降低.
③550K时,欲提高N2O的百分含量,应采取的措施是采用合适的催化剂.
(3)为探究碳基催化剂中Fe、Mn、Ni等元素的回收,将该催化剂溶解后得到含有Fe2+、Mn2+、Ni2+的溶液,物质的量浓度均为10-3mol•L-1.欲完全沉淀Fe2+、Mn2+(离子浓度低于1.0×10-6),应控制CO32-的物质的量浓度范围为(3.0×10-5,1.0×10-4 ).
沉淀物Ksp
FeCO33.0×10-11
MnCO32.0×10-11
NiCO31.0×10-7
(4)电化学催化净化NO是一种最新脱硝方法.原理示意图如图2,固体电解质起到传导O2-的作用.
a为外接电源的负极(填“正”、“负”).通入NO的电极反应式为2NO+4e-=N2+2O2-

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网