ÌâÄ¿ÄÚÈÝ

7£®¾§°û¼ÆËãÊÇÎïÖʽṹÊÔÌâÖо­³£¿¼²ìµÄÄÚÈÝ£¬Ò²¾­³£×÷Ϊ½ÏÄѵĿճöÏÖ£®
£¨1£©ÑõºÍÄÆÄܹ»Ðγɻ¯ºÏÎïA£¬Æä¾§°û½á¹¹Èçͼ1Ëùʾ£¬¾§°û²ÎÊý£¬a=0.566nm£¬A µÄ»¯Ñ§Ê½Îª£ºNa2O£¬¾§°ûÖÐÑõÔ­×ÓµÄÅäλÊýΪ8£»ÁÐʽ¼ÆËã¾§ÌåAµÄÃܶȣ¨g•cm-3£©$\frac{4¡Á62g/mol}{£¨0.566¡Á1{0}^{-7}cm£©^{3}¡Á6.02¡Á10{\;}^{23}/mol}$£®£¨²»ÓÃËã³ö½á¹û£©

£¨2£©SiCµÄ¾§°ûÓë½ð¸ÕʯµÄ¾§°ûÏàËÆ£¬Éè̼ԭ×ÓµÄÖ±¾¶Îªa cm£¬¹èÔ­×ÓµÄÖ±¾¶Îªb cm£¬Ôò¾§°ûµÄ±ß³¤Îª$\frac{2\sqrt{3}}{3}$£¨a+b£© cm£¨Óú¬a¡¢bµÄʽ×Ó±íʾ£©£®
£¨3£©ÄƼغϽðÊôÓÚ½ðÊô¾§Ì壬ÆäijÖֺϽðµÄ¾§°û½á¹¹Èçͼ2Ëùʾ£®ºÏ½ðµÄ»¯Ñ§Ê½ÎªKNa3£»¾§°ûÖÐK Ô­×ÓµÄÅäλÊýΪ6£»ÒÑÖª½ðÊôÔ­×Ó°ë¾¶r£¨Na£©=186pm¡¢r£¨K£©=227pm£¬¼ÆËã¾§ÌåµÄ¿Õ¼äÀûÓÃÂÊ$\frac{\frac{4}{3}¦Ð£¨18{6}^{3¡Á}3+22{7}^{3}£©}{£¨186¡Á2+227¡Á2£©^{3}}$¡Á100%£¨Áгö¼ÆËãʽ£¬²»ÐèÒª¼ÆËã³ö½á¹û£©£®

·ÖÎö £¨1£©ÑõºÍÄÆÄܹ»Ðγɻ¯ºÏÎïA£¬ÒõÀë×ÓλÓÚ¾§°ûµÄ¶¨µãºÍÃæÐÄ£¬ÑôÀë×ÓλÓÚ¾§°ûµÄÌåÐÄ£¬ÔòNaµÄ¸öÊýΪ8£¬OµÄ¸öÊýΪ8¡Á$\frac{1}{8}$+6¡Á$\frac{1}{2}$=4£¬N£¨Na£©£ºN£¨O£©=2£º1£¬ÔòÐγɵϝºÏÎïΪNa2O£»¸ù¾Ý¾§°ûµÄ½á¹¹ÅжÏÅäλÊý£»¼ÆËãÖÊÁ¿ºÍÌå»ý£¬¿É¼ÆËãÃܶȣ»
£¨2£©¸ù¾ÝÓ²Çò½Ó´¥Ä£ÐÍ¿ÉÖª£¬Ìå¶Ô½ÇÏßËÄ·ÖÖ®Ò»´¦µÄÔ­×ÓÓë¶¥µãÉϵÄÔ­×Ó½ôÌù£¬Éè¾§°û±ß³¤Îªx£¬ËùÒÔ$\frac{1}{4}$¡Á£¨$\sqrt{3}$x£©=$\frac{a+b}{2}$£¬Çó³ö¾§°ûµÄ±ß³¤£»
£¨3£©¸ù¾Ý¾ù̯·¨¿ÉÖª¾§°ûÖÐÓÐÄÆÔ­×ÓÊýΪ12¡Á$\frac{1}{4}$=3£¬¼ØÔ­×ÓÊýΪ8¡Á$\frac{1}{8}$=1£¬¾Ý´ËÈ·¶¨ºÏ½ðµÄ»¯Ñ§Ê½£¬¸ù¾Ý¾§°ûͼ¿ÉÖª£¬Ã¿¸öK Ô­×ÓÖÜΧÓÐ6¸öÄÆÔ­×Ó£»¸ù¾Ý¾§°ûµÄ½á¹¹¿ÉÖª£¬¾§°ûµÄ±ß³¤ÎªÄÆÔ­×ӺͼØÔ­×ÓµÄÖ±¾¶Ö®ºÍ£¬¾§ÌåµÄ¿Õ¼äÀûÓÃÂÊΪ$\frac{ÄÆÔ­×ÓÓë¼ØÔ­×ÓµÄÌå»ýÖ®ºÍ}{¾§°ûµÄÌå»ý}$¡Á100%£¬¾Ý´Ë´ðÌ⣮

½â´ð ½â£º£¨1£©ÑõºÍÄÆÄܹ»Ðγɻ¯ºÏÎïA£¬ÒõÀë×ÓλÓÚ¾§°ûµÄ¶¨µãºÍÃæÐÄ£¬ÑôÀë×ÓλÓÚ¾§°ûµÄÌåÐÄ£¬ÔòNaµÄ¸öÊýΪ8£¬OµÄ¸öÊýΪ8¡Á$\frac{1}{8}$+6¡Á$\frac{1}{2}$=4£¬N£¨Na£©£ºN£¨O£©=2£º1£¬ÔòÐγɵϝºÏÎïΪNa2O£»
¾§°ûÖÐOλÓÚÃæÐÄ£¬Ã¿¸ö¾§°ûÖÐÓÐ4¸öNaÓëOµÄ¾àÀë×î½ü£¬Ã¿¸ö¶¨µãΪ2¸ö¾§°û¹²ÓУ¬Ôò¾§°ûÖÐOÔ­×ÓµÄÅäλÊýΪ8£»
¾§°ûµÄÖÊÁ¿Îª$\frac{4¡Á62g/mol}{6.02¡Á1{0}^{23}/mol}$£¬¾§°ûµÄÌå»ýΪ£¨0.566¡Á10-7£©cm3£¬Ôò¾§ÌåFµÄÃܶÈΪ$\frac{4¡Á62g/mol}{£¨0.566¡Á1{0}^{-7}cm£©^{3}¡Á6.02¡Á10{\;}^{23}/mol}$£»
¹Ê´ð°¸Îª£ºNa2O£»8£»$\frac{4¡Á62g/mol}{£¨0.566¡Á1{0}^{-7}cm£©^{3}¡Á6.02¡Á10{\;}^{23}/mol}$£»
£¨2£©¸ù¾ÝÓ²Çò½Ó´¥Ä£ÐÍ¿ÉÖª£¬Ìå¶Ô½ÇÏßËÄ·ÖÖ®Ò»´¦µÄÔ­×ÓÓë¶¥µãÉϵÄÔ­×Ó½ôÌù£¬Éè¾§°û±ß³¤Îªx£¬ËùÒÔ$\frac{1}{4}$¡Á£¨$\sqrt{3}$x£©=$\frac{a+b}{2}$£¬½âµÃ£ºx=$\frac{2\sqrt{3}}{3}$£¨a+b£©£»
¹Ê´ð°¸Îª£º$\frac{2\sqrt{3}}{3}$£¨a+b£©£»
£¨3£©¸ù¾Ý¾ù̯·¨¿ÉÖª¾§°ûÖÐÓÐÄÆÔ­×ÓÊýΪ12¡Á$\frac{1}{4}$=3£¬¼ØÔ­×ÓÊýΪ8¡Á$\frac{1}{8}$=1£¬ËùÒԺϽðµÄ»¯Ñ§Ê½ÎªKNa3£»
¸ù¾Ý¾§°ûͼ¿ÉÖª£¬Ã¿¸öK Ô­×ÓÖÜΧÓÐ6¸öÄÆÔ­×Ó£¬ËùÒÔ¾§°ûÖÐK Ô­×ÓµÄÅäλÊýΪ6£¬¾§°ûÖÐÄÆÔ­×ӺͼØÔ­×ÓÌå»ýÖ®ºÍΪ$\frac{4}{3}$¦Ð£¨1863¡Á3+2273£©£¬¸ù¾Ý¾§°ûµÄ½á¹¹¿ÉÖª£¬¾§°ûµÄ±ß³¤ÎªÄÆÔ­×ӺͼØÔ­×ÓµÄÖ±¾¶Ö®ºÍΪ2¡Á£¨186pm+227pm£©£¬ËùÒÔ¾§°ûµÄÌå»ýΪ£¨2¡Á186pm+2¡Á227pm£©3£¬¾§ÌåµÄ¿Õ¼äÀûÓÃÂÊΪ$\frac{ÄÆÔ­×ÓÓë¼ØÔ­×ÓµÄÌå»ýÖ®ºÍ}{¾§°ûµÄÌå»ý}$¡Á100%=$\frac{\frac{4}{3}¦Ð£¨18{6}^{3¡Á}3+22{7}^{3}£©}{£¨186¡Á2+227¡Á2£©^{3}}$¡Á100%£»
¹Ê´ð°¸Îª£ºKNa3£»6£»$\frac{\frac{4}{3}¦Ð£¨18{6}^{3¡Á}3+22{7}^{3}£©}{£¨186¡Á2+227¡Á2£©^{3}}$¡Á100%£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¾§°û¼ÆËã¡¢¿Õ¼äÀûÓÃÂʵļÆËãµÈ£¬ÐèҪѧÉú¾ßÓÐÒ»¶¨µÄ¿Õ¼äÏëÏóÓëÊýѧ¼ÆËãÄÜÁ¦£¬ÌâÄ¿ÄѶÈÖеȣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø