ÌâÄ¿ÄÚÈÝ
16£®| A£® | µ±¿ª¹ØS±ÕºÏʱ£¬µç±í¼×¡¢ÒÒ¶¼Êǵçѹ±í£¬ÔòÆäʾÊýÖ®±ÈΪU¼×£ºUÒÒ=2£º1 | |
| B£® | µ±¿ª¹ØS±ÕºÏʱ£¬µç±í¼×¡¢ÒÒ¶¼Êǵçѹ±í£¬ÔòÆäʾÊýÖ®±ÈΪU¼×£ºUÒÒ=3£º1 | |
| C£® | µ±¿ª¹ØS¶Ï¿ªÊ±£¬µç±í¼×¡¢ÒÒ¶¼ÊǵçÁ÷±í£¬ÔòÆäʾÊýÖ®±ÈΪI¼×£ºIÒÒ=2£º3 | |
| D£® | µ±¿ª¹ØS¶Ï¿ªÊ±£¬µç±í¼×¡¢ÒÒ¶¼ÊǵçÁ÷±í£¬ÔòÆäʾÊýÖ®±ÈΪI¼×£ºIÒÒ=1£º3 |
·ÖÎö ÓÉͼ¿ÉÖª£¬µ±µç±í¶¼Êǵçѹ±íʱ£¬Á½µÆ´®Áª£¬¼×²â×ܵçѹ£¬ÒÒ²âL1Á½¶Ëµçѹ£¬ÓÉ´®ÁªµçÂ·ÌØµãºÍÅ·Ä·¶¨ÂɼÆËãÁ½µç±íʾÊý±È£»
ÓÉͼ¿ÉÖª£¬µ±µç±í¶¼ÊǵçÁ÷±íʱ£¬Á½µÆ²¢Áª£¬¼×²âL1µçÁ÷£¬ÒÒ²â×ܵçÁ÷£¬Óɲ¢ÁªµçÂ·ÌØµãºÍÅ·Ä·¶¨ÂɼÆËãÁ½µç±íµÄʾÊý±È£®
½â´ð ½â£º
£¨1£©ÓÉͼ¿ÉÖª£¬µ±µç±í¶¼Êǵçѹ±íʱ£¬L1¡¢L2´®Áª£¬¼×²â×ܵçѹ£¬ÒÒ²âL1Á½¶Ëµçѹ£¬
´®Áªµç·ÖеçÁ÷´¦´¦ÏàµÈ£¬ÓÉÅ·Ä·¶¨ÂɿɵÃÁ½µç±íʾÊý±È£º
$\frac{{U}_{¼×}}{{U}_{ÒÒ}}$=$\frac{I£¨{R}_{1}+{R}_{2}£©}{I{R}_{1}}$=$\frac{{R}_{1}+{R}_{2}}{{R}_{1}}$=$\frac{1+2}{1}$=$\frac{3}{1}$£¬¹ÊBÕýÈ·£¬A´íÎó£»
£¨2£©ÓÉͼ¿ÉÖª£¬µ±µç±í¶¼ÊǵçÁ÷±íʱ£¬Á½µÆ²¢Áª£¬¼×²âL1µçÁ÷£¬ÒÒ²â¸É·µÄµçÁ÷£¬
Óɲ¢ÁªµçÂ·ÌØµãÖª£ºU=U1£¬
ÓÉÅ·Ä·¶¨ÂɿɵãºI¼×R1=IÒÒ$\frac{{R}_{1}{R}_{2}}{{R}_{1}+{R}_{2}}$£¬
ËùÒÔ£º$\frac{{I}_{¼×}}{{I}_{ÒÒ}}$=$\frac{{R}_{2}}{{R}_{1}+{R}_{2}}$=$\frac{2}{1+2}$=$\frac{2}{3}$£¬¹ÊCÕýÈ·£¬D´íÎó£®
¹ÊÑ¡BC£®
µãÆÀ ±¾Ì⿼²éµçѹ±íºÍµçÁ÷±íÔÚµç·ÖеÄ×÷Óᢴ®²¢Áªµç·µÄÌØµãÒÔ¼°Å·Ä·¶¨ÂɵÄÓ¦Ó㬹ؼüÊÇÃ÷È·¼×ÒÒÒDZíµÄÖÖÀàºÍ²âÁ¿¶ÔÏó£®
£¨1£©ÓÃË®Á÷±È×÷µçÁ÷
£¨2£©Ì½¾¿Í¬Ò»Ö±ÏßÉ϶þÁ¦µÄºÏ³É
£¨3£©Ì½¾¿ÒºÌåÄÚ²¿Ñ¹Ç¿¹æÂÉ
£¨4£©ÓÃ×ܵç×èÌæ´úÁ½¸ö´®ÁªµÄµç×裮
| A£® | £¨1£©Ó루3£© | B£® | £¨2£©Ó루4£© | C£® | £¨2£©Ó루3£© | D£® | £¨1£©Ó루4£© |
| A£® | L2½«±È×ÔÉíÕý³£·¢¹âʱҪ°µ£¬µç·×ܹ¦ÂʱäС | |
| B£® | L2½«±È×ÔÉíÕý³£·¢¹âʱҪ°µ£¬µç·×ܹ¦Âʱä´ó | |
| C£® | L2½«±È×ÔÉíÕý³£·¢¹âʱҪÁÁ£¬µç·×ܹ¦ÂʱäС | |
| D£® | L2½«±È×ÔÉíÕý³£·¢¹âʱҪÁÁ£¬µç·×ܹ¦Âʱä´ó |