【题目】如图所示,是瑞安部分街道示意图,,,,,,,,,,为“公交汽车”停靠点,甲公共汽车从站出发,按照,,,,,,的顺序到达站,乙公共汽车从站出发,按照,,,,,,的顺序到达站,如果甲、乙两车分别从、两站同时出发,各站耽误的时间相同,两辆车速度也一样,则( )
A. 甲车先到达指定站 B. 乙车先到达指定站
C. 同时到达指定站 D. 无法确定
【题目】如图,动点从出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点第次碰到矩形的边时,点的坐标为( )
A. (0,3) B. (5,0) C. (1,4) D. (8,3)
【题目】如图所示,再平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),,点C的坐标为(0,3).
(1)求a,b的值;
(2)求;
(3)若点M在坐标轴上,且=,直接写出M的坐标;
(4)点D的坐标为(6,5),动点P在x轴上,当△CDP试等腰三角形,请直接写出所有符合条件的点P的坐标.
【题目】如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根据这个规律,点P2 019的坐标为_____
【题目】在中,,翻折,使点落在斜边上某一点处,折痕为(点、分别在边、上)
当时,若与相似(如图),求的长;
当点是的中点时(如图),与相似吗?请说明理由.
【题目】定义:若一个三角形中,其中有一个内角是另外一个内角的一半,则这样的三角形叫做“半角三角形”. 例如:等腰直角三角形就是“半角三角形”.在钝角三角形中,,,,过点的直线交边于点.点在直线上,且.
(1)若,点在延长线上.
① 当,点恰好为中点时,依据题意补全图1.请写出图中的一个“半角三角形”:_______;
② 如图2,若,图中是否存在“半角三角形”(△除外),若存在,请写出图中的“半角三角形”,并证明;若不存在,请说明理由;
(2)如图3,若,保持的度数与(1)中②的结论相同,请直接写出,, 满足的数量关系:______.
【题目】如图,四边形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,E为AB的中点.
(1)求证:△ADC∽△ACB;
(2)CE与AD有怎样的位置关系?试说明理由;
(3)若AD=4,AB=6,求的值.
【题目】阅读下列材料,然后回答问题 .
已知 ,,,,,,….,当为大于1的奇数时,;当为大于1的偶数时,.
(1)求;(用含的代数式表示)
(2)直接写出 ;(用含的代数式表示)
(3)计算:= .
【题目】如图,在四边形中,,,,点为边上一点,连接,. 与交于点,且∥.
(1)求证:;
(2)若,. 求的长 .
【题目】如图,、是两个全等的等腰直角三角形,.
若将的顶点放在上(如图),、分别与、相交于点、.求证:;
若使的顶点与顶点重合(如图),、与相交于点、.试问与还相似吗?为什么?