如图,二次函数y=x2-6x+n的部分图象如图所示,若关于x的一元二次方程x2-6x+n=0的一个解为x1=1,则另一个解x2= ___________.

5. 【解析】试题分析:根据二次函数的图象与x轴的交点关于对称轴对称,直接求出x2的值. 试题解析:由图象知,对称轴为x=- 根据二次函数的图象的对称性, 解得:x2=5.

抛物线y=2x2+4x+m与x轴只有一个公共点,则m的值为____

2 【解析】∵抛物线与x轴只有一个公共点, ∴△=0, ∴b2-4ac=42-4×2×m=0; ∴m=2. 故答案为:2.

如图,抛物线y= -x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y____0(填“>”“=”或“<”号).

< 【解析】试题分析:根据题意可得函数的对称轴为x=1,∵0<<1,则1<<2,∴x=-2<0,根据图象可得:当x<0时,y<0.

(1)请在坐标系中画出二次函数y=x2﹣2x的大致图象;

(2)根据方程的根与函数图象的关系,将方程x2﹣2x=1的根在图上近似的表示出来(描点);

(3)观察图象,直接写出方程x2﹣2x=1的根.(精确到0.1)

【解析】 (1)如下图, y=x2﹣2x=(x﹣1) 2﹣1, 作出顶点,作出与x轴的交点,图象光滑. (2)正确作出点M,N; (3)写出方程的根为﹣0.4,2.4. 【解析】 (1)确定顶点坐标和与x轴y轴交点,作出图形; (2)方程x2﹣2x=1的根就是二次函数y=x2﹣2x的函数值为1时的横坐标x的值; (3)观察图象可知图象交点的横坐标即...

已知一元二次方程x2+px+q+1=0的一根为2.

(1)求q关于p的关系式;

(2)求证:抛物线y=x2+px+q与x轴有两个交点;

(1)q= -2p-5;(2)见解析 【解析】试题分析:(1)把x=2代入可求得q与p的关系式; (2)由△=b2-4ac可判断抛物线与x轴的交点情况. 试题解析:(1)把x=2代入得22+2p+q+1=0,即q= -2p-5; (2)∵△=p2-4q>0, 由(1)得△=p2+4(2p+5)=p2+8p+20=(p+4)2+4>0, ∴一元二次方程x2+px+...

已知二次函数y=x2+2x+c的图象经过点(1,-5).

(1)求c的值;

(2)求函数图象与x轴的交点坐标.

(1)8;(2)(-4,0),(2,0) 【解析】试题分析:(1)二次函数解析式只有一个待定系数c,把点(1,-5)代入解析式即可求c; (2)已知二次函数解析式求函数图象与x轴的交点坐标,令y=0,解一元二次方程,可得交点的横坐标. 试题分析:(1)∵点(1,-5)在y=x2+2x+c的图象上, ∴-5=1+2+c, ∴c= -8; (2)令y=0,则x2+2...

已知y关于x的函数:y=(k-2)x2-2(k-1)x+k+1中满足k≤3.

求证:此函数图象与x轴总有交点;

见解析 【解析】试题分析:本题可将函数分成一次函数和二次函数两种情况讨论:当k=2时,函数为一次函数,与x轴一定有交点;当k≠2时,函数为二次函数,让y=0,根据根与系数的关系以及k的取值范围我们可判断出此时的方程是否有解,如果有解,则必与x轴有交点. 试题解析:分两种情况: (1)当k=2时,函数为y= -2x+3,图象与x轴有交点. (2)当k≠2时,△=4(k-1)2...

已知抛物线y= -x2+mx+(7-2m)(m为常数).

(1)证明:不论m为何值,抛物线与x轴恒有两个不同的交点;

(2)若抛物线与x轴的交点A(x1,0)、B(x2,0)的距离为AB=4(A在B的左边),且抛物线交y轴的正半轴于C,求抛物线的解析式.

(1)证明见解析;(2)抛物线的解析式为y= -x2+2x+3. 【解析】试题分析:(1)要证明抛物线与x轴恒有两个不同的交点证明抛物线的判别式是正数,所以证明判别式是正数即可解决问题; (2)首先由AB=4可以得|x2-x1|=4,而(x2-x1)2=(x2-x1)2-4x1x2=16,然后利用根与系数的关系即可得到关于m方程,解方程即可求出m,也就求出了抛物线的解析式. 试题...

在直角坐标系中,将点P(-3,2)向沿y轴方向向上平移4个单位长度后,得到的点坐标为( )

A. (-3,6) B. (1,2) C. (-7,2) D. (-3,-2)

A 【解析】因为点沿y轴向上移动,横坐标不变,纵坐标加上平移单位,将点P(-3,2)向沿y轴方向向上平移4个单位长度后,得到的点坐标为(-3,6),故选A.

如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为(  )

A. 2 B. 3 C. 4 D. 5

A 【解析】由B点平移前后的纵坐标分别为1,2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2,3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A,B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2,故选:A.
 0  322190  322198  322204  322208  322214  322216  322220  322226  322228  322234  322240  322244  322246  322250  322256  322258  322264  322268  322270  322274  322276  322280  322282  322284  322285  322286  322288  322289  322290  322292  322294  322298  322300  322304  322306  322310  322316  322318  322324  322328  322330  322334  322340  322346  322348  322354  322358  322360  322366  322370  322376  322384  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网