连续平移只改变图形的那方面,没有改变图形的哪几方面?
如图所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于( )
![]()
A. 30° B. 40° C. 45° D. 36°
在等腰梯形ABCD中,∠ABC=2∠ACB,BD平分∠ABC,AD∥BC,如图所示,则图中的等腰三角形有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
如图,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于( )
![]()
A. 2cm B. 4cm C. 6cm D. 8cm
下面几种三角形:
①有两个角为60°的三角形;
②三个外角都相等的三角形;
③一条边上的高也是这条边上的中线的三角形;
④有一个角为60°的等腰三角形.
其中是等边三角形的有( )
A. 4个 B. 3个 C. 2个 D. 1个
用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设 。
等腰三角形的顶角α>90°,如果过其顶角的顶点作一条直线将这个等腰三角形分 成了两个等腰三角形,那么α的度数为________.
如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.
求证:(1)△ABC≌△ADC;(2)BO=DO.
![]()
文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:
![]()
文文:“过点A作BC的中垂线AD,垂足为D”;
彬彬:“作△ABC的角平分线AD”.
数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”
(1)请你简要说明文文的辅助线作法错在哪里;
(2)根据彬彬的辅助线作法,完成证明过程.
四边形ABCD是正方形.
(1)如图(1)所示,点G是BC边上任意一点(不与B,C两点重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.求证△ABF≌△DAE;
(2)在(1)中,线段EF与AF,BF的等量关系是____;(不需证明,直接写出结论即可)
(3)如图(2)所示,若点G是CD边上任意一点(不与C,D两点重合),作BF⊥AG于点F,DE⊥AG于点E,那么图中的全等三角形是____,线段EF与AF,BF的等量关系是____.(不需证明,直接写出结论即可)
![]()