小明某天上午9时骑自行车离开家,15时回到家,他有意描绘了离家的距离与时间的变化情况(如图所示).
![]()
(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?
(2)10时和13时,他分别离家多远?
(3)他到达离家最远的地方是什么时间?离家多远?
(4)11时到12时他行驶了多少千米?
(5)他可能在哪段时间内休息,并吃午餐?
(6)他由离家最远的地方返回时的平均速度是多少?
某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话).若一个月通话x分钟,两种方式的费用分别为y1元和y2元.
(1)写出y1,y2与x之间的关系式;
(2)一个月内通话多少分钟,两种方式费用相同?
(3)某人估计一个月内通话300分钟,应选择哪种方式更合算些?
近期,大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售,某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:
每千克售价(元) | 38 | 37 | 36 | 35 | … | 20 |
每天销量(千克) | 50 | 52 | 54 | 56 | … | 86 |
设当单价从38元/千克下调了x元时,销售量为y千克.
(1)写出y与x之间的关系式;
(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,这天的销售利润是多少?
(3)以前在两岸未直接通航时,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/千克,一次进货最多只能是多少千克?
(3分)在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是( )
A.
B.3 C.
D.![]()
如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值为( )
![]()
A.
B.
C.
D. ![]()
如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是( )
![]()
A.
B.
C.
D. ![]()
已知sin6°=a,sin36°=b,则sin26°=( )
A. a2 B. 2a C. b2 D. b
在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值( )
A.都扩大两倍 B.都缩小两倍 C.不变 D.都扩大四倍
△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是( )
A. bcosB=c B. csinA=a C. atanA=b D. tanB=![]()
在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是( )
A. b=atanB B. a=ccosB C. c=
D. a=bcosA