某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC, EF∥BC,∠AEF=143°,AB=AE=1.3米,那么适合该地下车库的车辆限高标志牌为多少米?(结果精确到0.1.参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)
如图,⊙O是△ABC的外接圆,AB=AC,P是⊙O上一点.
(1)操作:请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线;
(2)说理:结合图②,说明你这样画的理由.
某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高1元其销售量就减少20件.
(1)当售价定为12元时,每天可售出 件;
(2)要使每天利润达到640元,则每件售价应定为多少元?
(3)当每件售价定为多少元时,每天获得最大利润?并求出最大利润.
如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若AB=4+,BC=2,求⊙O的半径.
【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα= ,求sin2α的值.小娟是这样给小芸讲解的:
构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα= ,可设BC=x,则AB=3x,….
【问题解决】
(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)
(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ= ,求sin2β的值.
如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于C点,对称轴与抛物线相交于点M,与x轴相交于点N.点P是线段MN上的一动点,过点P作PE⊥CP交x轴于点E.
(1)直接写出抛物线的顶点M的坐标是 .
(2)当点E与点O(原点)重合时,求点P的坐标.
(3)点P从M运动到N的过程中,求动点E的运动的路径长.
关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为( )
A. ﹣1 B. 1 C. 1或﹣1 D. 3
已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是( )
A. 相交 B. 相切 C. 相离 D. 不能确定
一元二次方程3x2﹣6x+4=0根的情况是( )
A. 有两个不相等的实数根 B. 有两个相等的实数根
C. 没有实数根 D. 有两个实数根
向如图所示的地砖上随机地掷一个小球,当小球停下时,最终停在地砖上阴影部分的概率是( )
A. B. C. D.